Сферические координаты Пусть A – точка в пространстве с заданной системой координат. Ортогональную проекцию точки A на плоскость Oxy обозначим A', а длину.

Презентация:



Advertisements
Похожие презентации
Расстояние между точками Теорема. Расстояние между точками A 1 (x 1, y 1, z 1 ), A 2 (x 2, y 2, z 2 ) в пространстве выражается формулой.
Advertisements

Полярные координаты Пусть на плоскости задана координатная прямая с началом координат О и направляющим вектором. Эта прямая в данном случае будет называться.
Прямоугольная система координат Прямоугольной системой координат в пространстве называется тройка взаимно перпендикулярных координатных прямых с общим.
Прямоугольная система координат Прямоугольной системой координат в пространстве называется тройка взаимно перпендикулярных координатных прямых с общим.
Координатная прямая Координатной прямой, или координатной осью называется прямая, на которой выбраны точка O, называемая началом координат, и единичный.
Полярные координаты Пусть на плоскости задана координатная прямая с выделенной точкой О и единичным отрезком ОЕ. Эта прямая в данном случае будет называться.
Полярные координаты Пусть на плоскости задана координатная прямая с выделенной точкой О и единичным отрезком ОЕ. Эта прямая в данном случае будет называться.
Расстояние между точками Расстояние между точками A 1 (x 1, y 1 ), A 2 (x 2, y 2 ) на плоскости с заданными координатами выражается формулой.
Упражнение 49 Найдите координаты точек A, B, C, D, E, F. Ответ: A(3, 1), B(1, 2), C(2,4), D(-2, 3), E(-3, -2), F(4, -3).
Уравнение плоскости в пространстве Теорема. Плоскость в пространстве задается уравнением где a, b, c, d - действительные числа, причем a, b, c одновременно.
Координатная прямая Координатной прямой, или координатной осью называется прямая, на которой выбраны точка O, называемая началом координат, и единичный.
Уравнение прямой в пространстве Поскольку прямую в пространстве можно рассматривать как линию пересечения двух плоскостей, то одним из способов аналитического.
Аналитическое задание многогранников Неравенства ax + by + cz + d 0 и ax + by + cz + d 0 определяют полупространства, на которые плоскость, заданная уравнением.
Уравнение плоскости Теорема. Плоскость в пространстве задается уравнением где a, b, c, d - действительные числа, причем a, b, c одновременно не равны нулю.
{ общее уравнение прямой на плоскости – уравнение прямой с угловым коэффициентом – векторная и параметрическая формы уравнения прямой – совместное исследование.
Цилиндр, конус и шар Понятие Площадь поверхности.
. СФЕРОЙ НАЗЫВАЕТСЯ ПОВЕРХНОСТЬ, СОСТОЯЩАЯ ИЗ ВСЕХ ТОЧЕК ПРОСТРАНСТВА, РАСПОЛОЖЕННЫХ НА ДАННОМ РАСТОЯНИИ ОТ ДАННОЙ ТОЧКИ. О- центр сферы.
Уравнение прямой Теорема. Прямая на плоскости задается уравнением ax + by + c = 0, где a, b, c - некоторые числа, причем a, b одновременно не равны нулю.
Тела вращения Шар. Сфера и шар. Тело, ограниченное сферой, называется шаром. Сферой называется поверхность, состоящая из всех точек пространства, расположенных.
1.Все о сфере 2.Все о шаре 3.Что такое Сферическая геометрия? 4.Что такое сферическая тригонометрия?
Транксрипт:

Сферические координаты Пусть A – точка в пространстве с заданной системой координат. Ортогональную проекцию точки A на плоскость Oxy обозначим A', а длину вектора ОA - через r. Угол наклона вектора к плоскости Оxy обозначим ψ, причем будем считать его изменяющимся от -90 o до +90 o. Если точка A расположена в верхнем полупространстве, то угол ψ считается положительным, а если в нижнем, то отрицательным. Угол между вектором и осью Ox обозначим φ. Тройка (r, ψ, φ) называется сферическими координатами точки A в пространстве.

Сферические координаты Декартовы координаты (x,y,z) точки в пространстве выражаются через ее сферические координаты по формулам и, наоборот, если заданы декартовы координаты, то по ним можно найти сферические координаты по формулам

Сферические координаты Точки на сфере, имеющие одинаковый угол ψ, образуют окружность, которая называется параллелью. Точки, имеющие одинаковый угол φ, образуют полуокружность, называемую меридианом. Дуга большой окружности, соединяющая две точки сферы, является кратчайшим путем на сфере между этими двумя точками. Такой путь называют ортодромией, что в переводе с греческого означает "прямой бег". Кривая, образующая равные углы с разными меридианами, называется локсодромия, что в переводе с греческого означает "косой бег".

Упражнение 1 Найдите декартовы координаты следующих точек пространства, заданных своими сферическими координатами: (1, 45°, 120°), (2, -30°, -90°), (1, 90°, 60°). Ответ:

Упражнение 2 Найдите сферические координаты следующих точек пространства, заданных своими декартовыми координатами: а) A(1, 1, 1); б) B(-1, 0, 1); в) C(0, 0, 2). Ответ: A: B(, 45 о, 180 о ); C(2, 90 о, 0 о ).

Упражнение 3 Найдите сферические координаты вершин куба, задаваемого в декартовых координатах системой неравенств Ответ: (0, 0 о, 0 о ); (1, 0 о, 0 о ); (,0 о, 45 о ); (1, 0 о, 90 о ); (1, 90 о, 0 о ); (, 45 о, 0 о ); (,, ), sin =, sin = ; (, 45 о, 90 о ).

Упражнение 4 Точка A имеет сферические координаты (r,, ). Найдите сферические координаты точки, симметричной данной, относительно: а) координатных плоскостей; б) осей координат; в) начала координат. Ответ: а) (r, -, ), (r,, 180 о - ), (r,, - ); б) (r, -, - ), (r, -, 180 о - ), (r,, 180 о + ); в) (r, -, 180 о + ).

Упражнение 5 Найдите геометрическое место точек пространства, сферические координаты которых удовлетворяют условиям: а) r постоянно; б) постоянно; в) постоянно. Ответ: а) Сфера; б) коническая поверхность; в) полуплоскость.

Упражнение 6 Какая фигура в пространстве задается неравенствами: а) 0 r 1, 0 ; б) 0 r 1, 0 ; в) 0 r 1, 0, 0 ? Ответ: а) Полушар; б) полушар; в) четверть шара.

Упражнение 7 Найдите расстояние между точками, заданными своими сферическими координатами: A(, 0°, 45°), B(2, 60°, 0°). Ответ: 2.

Упражнение 8 Где закончится локсодромия, образующая острый угол с меридианами, при ее продолжении в обе стороны? Ответ: На полюсах.

Упражнение 9 Напишите уравнение сферы в сферических координатах Ответ: r = 1.

Упражнение 10 Найдите длины дуг локсодромии и ортодромии, соединяющих точки A 1 (R, 45°, 0°), A 2 (R, 45°, 180°) на сфере. Ответ: