АКСИОМЫ СТЕРЕОМЕТРИИ Через любые две точки пространства проходит единственная прямая Через любые три точки пространства, не принадлежащие одной прямой,

Презентация:



Advertisements
Похожие презентации
АКСИОМЫ СТЕРЕОМЕТРИИ Через любые две точки пространства проходит единственная прямая Через любые три точки пространства, не принадлежащие одной прямой,
Advertisements

Основные понятия и аксиомы стереометрии
{ Выполняя задания постарайтесь сделать чертёж к каждому } Упражнения по теме.
Основные понятия Стереометрия, или геометрия в пространстве, – это раздел геометрии, изучающий положение, форму, размеры и свойства различных пространственных.
СЛЕДСТВИЯ ИЗ АКСИОМ Если прямая имеет с плоскостью две общие точки, то она лежит в этой плоскости Через прямую и не принадлежащую ей точку проходит единственная.
АКСИОМЫ СТЕРЕОМЕТРИИ ДИКТАНТ. 1 В каком случае три точки в пространстве не определяют положение плоскости, проходящей через эти точки?
СЛЕДСТВИЯ ИЗ АКСИОМ Если прямая имеет с плоскостью две общие точки, то она лежит в этой плоскости Через прямую и не принадлежащую ей точку проходит единственная.
Следствие 1 Если прямая имеет с плоскостью две общие точки, то она лежит в этой плоскости. Доказательство. Пусть прямая с имеет с плоскостью α две общие.
Сухорукова Е.В. МОУ «Борисовская СОШ 2». Через любые две точки пространства проходит единственная прямая Через любые три точки пространства, не принадлежащие.
ОБОЗНАЧЕНИЯ Точка A принадлежит прямой a Точка B не принадлежит прямой a Точка A принадлежит плоскости Прямая a лежит в плоскости Прямая b не лежит в плоскости.
Через любые две точки пространства проходит единственная прямая.
Аксиомы стереометрии и их простейшие следствия.. Геометрия Планиметрия Объекты: точка прямая Стереометрия Объекты: точка прямая плоскость.
Верно ли утверждение: если две прямые не имеют общих точек, то они параллельны. Ответ: Нет, так как параллельные прямые должны также лежать в одной плоскости.
Тема урока: Следствия аксиом стереометрии Цели урока: изучить теорему о плоскости, проведенной через прямую и точку вне ее; изучить теорему о плоскости,
Начать тест Использован шаблон создания тестов в PowerPointшаблон создания тестов в PowerPoint.
Презентация по теме: « Аксиомы стереометрии» Выполнила: Дмитрикова Ольга Викторовна Учитель математики МКОУ «Огорская СОШ» С.Огорь Жиздринский район Калужская.
Урок по теме: «Параллельность прямых и плоскостей в пространстве.
Определение. Стереометрия – это раздел геометрии, в котором изучаются фигуры и их свойства в пространстве. Основная фигура стереометрии – плоскость. α.
Стереометрия – это раздел геометрии, в котором изучаются фигуры в пространстве.
1 2 А В С Через любые три точки, не лежащие на одной прямой проходит плоскость и притом только одна (А 1 ) А 1.
Транксрипт:

АКСИОМЫ СТЕРЕОМЕТРИИ Через любые две точки пространства проходит единственная прямая Через любые три точки пространства, не принадлежащие одной прямой, проходит единственная плоскость Если две плоскости имеют общую точку, то они пересекаются по прямой Существуют по крайней мере четыре точки, не принадлежащие одной плоскости На любой плоскости выполняются все аксиомы планиметрии

Упражнение 1 Сколько прямых проходит через две точки пространства? Ответ: Одна.

Упражнение 2 Сколько плоскостей проходит через три точки пространства? Ответ: Одна, если три точки не принадлежат одной прямой; бесконечно много в противном случае.

Упражнение 3 Сколько общих точек могут иметь две плоскости? Ответ: Ни одной, или бесконечно много.

Упражнение 4 Верно ли утверждение о том, что всякие: а) три точки; б) четыре точки пространства принадлежат одной плоскости? Ответ: а) Да; б) нет.

Упражнение 5 Верно ли, что если окружность имеет с плоскостью две общие точки, то окружность лежит в этой плоскости? Ответ: Нет.

Упражнение 6 Ответ:. Определите по рисунку плоскостям каких фигур принадлежит точка M плоскости.

Упражнение 7 Ответ: а) Точки A, B, C должны принадлежать одной прямой; б) точки K, L, M должны принадлежать одной прямой. Найдите ошибку на рисунках, если: а) α и β - две пересекающиеся плоскости, и точки A, B, C принадлежат как α,так и β ; б) α, β, γ - три попарно пересекающиеся плоскости, причем точки K, L, M принадлежат плоскостям α и β, а точки N, O, P – плоскостям α и γ.

Упражнение 8 Ответ: Нет, прямая b не может пересекать прямую c. На рисунке попарно пересекающиеся прямые a, b, c пересекают плоскость соответственно в точках A, B, C. Правильно ли выполнен рисунок?