Уравнение прямой в пространстве Поскольку прямую в пространстве можно рассматривать как линию пересечения двух плоскостей, то одним из способов аналитического.

Презентация:



Advertisements
Похожие презентации
Уравнение прямой в пространстве Поскольку прямую в пространстве можно рассматривать как линию пересечения двух плоскостей, то одним из способов аналитического.
Advertisements

Уравнение прямой Теорема. Прямая на плоскости задается уравнением ax + by + c = 0, где a, b, c - некоторые числа, причем a, b одновременно не равны нулю.
Уравнение прямой Теорема. Прямая на плоскости задается уравнением ax + by + c = 0, где a, b, c - некоторые числа, причем a, b одновременно не равны нулю.
Уравнение плоскости в пространстве Теорема. Плоскость в пространстве задается уравнением где a, b, c, d - действительные числа, причем a, b, c одновременно.
Тема 5 «Прямая на плоскости» Кафедра математики и моделирования Старший преподаватель Г.В. Аверкова Курс «Высшая математика» Вывод общего уравнения прямой.
Уравнение плоскости Теорема. Плоскость в пространстве задается уравнением где a, b, c, d - действительные числа, причем a, b, c одновременно не равны нулю.
Глава III. Аналитическая геометрия Аналитическая геометрия – раздел геометрии, в котором простейшие линии и поверхности (прямые, плоскости, кривые и поверхности.
Аналитическая геометрия Аналитическая геометрия – раздел геометрии, в котором простейшие линии и поверхности (прямые, плоскости, кривые и поверхности второго.
§ 13. Прямая в пространстве 1. Уравнения прямой в пространстве Пусть A 1 x+B 1 y+C 1 z+D 1 =0 и A 2 x+B 2 y+C 2 z+D 2 =0 – уравнения любых двух различных.
Глава III. Аналитическая геометрия Аналитическая геометрия – раздел геометрии, в котором простейшие линии и поверхности (прямые, плоскости, кривые и поверхности.
Аналитическая геометрия Часть 2 Геометрия в пространстве.
РАВНОМЕРНОЕ ПРЯМОЛИНЕЙНОЕ ДВИЖЕНИЕ. Урок физики 10 класс. Учитель физики : Должикова Н. Г.
Презентация выполнена учителем физики МОУ «СОШ с. Леляевка» Акимочкиным А.Л.
Расстояние между точками Теорема. Расстояние между точками A 1 (x 1, y 1, z 1 ), A 2 (x 2, y 2, z 2 ) в пространстве выражается формулой.
Содержание. Основные понятия кинематики. Способы задания положения тела. Способы описания движения. Перемещение. Скорость равномерного прямолинейного.
§ 3. Плоскость 1. Общее уравнение плоскости и его исследование ЗАДАЧА 1. Записать уравнение плоскости, проходящей через точку M 0 (x 0 ;y 0 ;z 0 ), перпендикулярно.
Прямая в пространстве. Общее уравнение прямой Прямая линия в пространстве определяется как линия пересечения двух плоскостей.
Плоскость и прямая в пространстве Лекция 10. Определение. Уравнением поверхности в пространстве называется такое уравнение между переменными которому.
Аналитическая геометрия Лекции 8,9. Прямая на плоскости.
Транксрипт:

Уравнение прямой в пространстве Поскольку прямую в пространстве можно рассматривать как линию пересечения двух плоскостей, то одним из способов аналитического задания прямой в пространстве является задание с помощью системы из двух уравнений задающих пару пересекающихся плоскостей.

Уравнение прямой в пространстве Прямую, проходящую через точку A 0 (x 0, y 0, z 0 ) с направляющим вектором (a,b,c) можно задавать параметрическими уравнениями В случае, если прямая в пространстве задается двумя точками A 1 (x 1, y 1, z 1 ), A 2 (x 2, y 2, z 2 ), то, выбирая в качестве направляющего вектора вектор (x 2 – x 1, y 2 – y 1, z 2 – z 1 ) и в качестве точки А 0 точку А 1, получим следующие уравнения

Угол между двумя прямыми Угол между двумя прямыми в пространстве, заданными параметрическими уравнениями можно найти, используя формулу где – направляющие векторы.

Упражнение 1 Какими уравнениями задаются координатные прямые? Ответ: Ось Ox Ось Oy Ось Oz

Упражнение 2 Напишите параметрические уравнения прямой, проходящей через точку А(1, -2, 3) с направляющим вектором, имеющим координаты (2, 3, -1). Ответ:

Упражнение 3 Напишите параметрические уравнения прямой, проходящей через точки А 1 (-2, 1, -3), А 2 (5, 4, 6). Ответ:

Упражнение 4 Напишите параметрические уравнения прямой, проходящей через точку M(1, 2, -3) и перпендикулярную плоскости x + y + z + 1 = 0. Ответ:

Упражнение 5 В каком случае параметрические уравнения определяют перпендикулярные прямые? Ответ: Если выполняется равенство a 1 a 2 +b 1 b 2 +c 1 c 2 =0.

Упражнение 6 Определите взаимное расположение прямой, задаваемой уравнениями и плоскости, задаваемой уравнением x – 3y + z +1 = 0. Ответ: Перпендикулярны.

Упражнение 7 Найдите координаты точки пересечения плоскости 2x – y + z – 3 = 0 и прямой, проходящей через точки A(-1, 0, 2) и B(3, 1, 2). Ответ:

Упражнение 8 Определите взаимное расположение прямых, задаваемых уравнениями Ответ: Перпендикулярны.

Упражнение 9 Точка движется прямолинейно и равномерно в направлении вектора (1, 2, 3). В начальный момент времени t = 0 она имела координаты (-1, 1, -2). Какие координаты она будет иметь в момент времени t = 4? Ответ: (3, 9, 10).

Упражнение 10 Параметрические уравнения движения материальной точки в пространстве имеют вид Найдите скорость. Ответ:

Упражнение 11 Точка движется прямолинейно и равномерно. В момент времени t = 2 она имела координаты (3, 4, 0), а в момент времени t = 6 - координаты (2, 1, 3). Какова скорость движения точки? Ответ:

Упражнение 12 Прямая в пространстве задана параметрическими уравнениями Напишите параметрические уравнения прямых, симметричных данной относительно координатных плоскостей. Ответ: