АКСИОМЫ СТЕРЕОМЕТРИИ Через любые две точки пространства проходит единственная прямая Через любые три точки пространства, не принадлежащие одной прямой,

Презентация:



Advertisements
Похожие презентации
АКСИОМЫ СТЕРЕОМЕТРИИ Через любые две точки пространства проходит единственная прямая Через любые три точки пространства, не принадлежащие одной прямой,
Advertisements

Основные понятия и аксиомы стереометрии
{ Выполняя задания постарайтесь сделать чертёж к каждому } Упражнения по теме.
Основные понятия Стереометрия, или геометрия в пространстве, – это раздел геометрии, изучающий положение, форму, размеры и свойства различных пространственных.
СЛЕДСТВИЯ ИЗ АКСИОМ Если прямая имеет с плоскостью две общие точки, то она лежит в этой плоскости Через прямую и не принадлежащую ей точку проходит единственная.
АКСИОМЫ СТЕРЕОМЕТРИИ ДИКТАНТ. 1 В каком случае три точки в пространстве не определяют положение плоскости, проходящей через эти точки?
Сухорукова Е.В. МОУ «Борисовская СОШ 2». Через любые две точки пространства проходит единственная прямая Через любые три точки пространства, не принадлежащие.
ОБОЗНАЧЕНИЯ Точка A принадлежит прямой a Точка B не принадлежит прямой a Точка A принадлежит плоскости Прямая a лежит в плоскости Прямая b не лежит в плоскости.
СЛЕДСТВИЯ ИЗ АКСИОМ Если прямая имеет с плоскостью две общие точки, то она лежит в этой плоскости Через прямую и не принадлежащую ей точку проходит единственная.
Следствие 1 Если прямая имеет с плоскостью две общие точки, то она лежит в этой плоскости. Доказательство. Пусть прямая с имеет с плоскостью α две общие.
Через любые две точки пространства проходит единственная прямая.
Верно ли утверждение: если две прямые не имеют общих точек, то они параллельны. Ответ: Нет, так как параллельные прямые должны также лежать в одной плоскости.
Начать тест Использован шаблон создания тестов в PowerPointшаблон создания тестов в PowerPoint.
Аксиомы стереометрии и их простейшие следствия.. Геометрия Планиметрия Объекты: точка прямая Стереометрия Объекты: точка прямая плоскость.
Тема урока: Следствия аксиом стереометрии Цели урока: изучить теорему о плоскости, проведенной через прямую и точку вне ее; изучить теорему о плоскости,
Определение. Стереометрия – это раздел геометрии, в котором изучаются фигуры и их свойства в пространстве. Основная фигура стереометрии – плоскость. α.
Стереометрия – это раздел геометрии, в котором изучаются фигуры в пространстве.
1 2 А В С Через любые три точки, не лежащие на одной прямой проходит плоскость и притом только одна (А 1 ) А 1.
Урок по теме: «Параллельность прямых и плоскостей в пространстве.
Тема урока: «Аксиомы стереометрии и их следствия. Решение задач»
Транксрипт:

АКСИОМЫ СТЕРЕОМЕТРИИ Через любые две точки пространства проходит единственная прямая Через любые три точки пространства, не принадлежащие одной прямой, проходит единственная плоскость Если две плоскости имеют общую точку, то они пересекаются по прямой Существуют по крайней мере четыре точки, не принадлежащие одной плоскости

ВОПРОС 1 Сколько прямых проходит через две точки пространства? Ответ: Одна.

ВОПРОС 2 Сколько плоскостей проходит через три точки пространства? Ответ: Одна, если три точки не принадлежат одной прямой; бесконечно много в противном случае.

ВОПРОС 3 Сколько общих точек могут иметь две плоскости? Ответ: Ни одной, или бесконечно много.

ВОПРОС 4 Верно ли утверждение, что всякие: а) три точки; б) четыре точки пространства принадлежат одной плоскости? Ответ: а) Да; б) нет.

ВОПРОС 5 Верно ли, что если окружность имеет с плоскостью две общие точки, то окружность лежит в этой плоскости? Ответ: Нет.

ВОПРОС 6 Ответ:. Определите по рисунку плоскостям каких фигур принадлежит точка M плоскости.

ВОПРОС 7 Ответ: а) Точки A, B, C должны принадлежать одной прямой; б) точки K, L, M должны принадлежать одной прямой. Найдите ошибку на рисунках, если: а) и - две пересекающиеся плоскости, и точки A, B, C принадлежат как,так и ; б),, - три попарно пересекающиеся плоскости, причем точки K, L, M принадлежат плоскостям и, а точки N, O, P – плоскостям и.

ВОПРОС 8 Ответ: Нет, прямая b не может пересекать прямую c. На рисунке попарно пересекающиеся прямые a, b, c пересекают плоскость соответственно в точках A, B, C. Правильно ли выполнен рисунок?