Построение окружности. Показ О А. Окружностью называется фигура, состоящая из всех точек плоскости, находящихся от данной точки на данном расстоянии.

Презентация:



Advertisements
Похожие презентации
В геометрии выделяют задачи на построение, которые можно решить только с помощью двух инструментов: циркуля и линейки без масштабных делений. Линейка.
Advertisements

В геометрии выделяют задачи на построение, которые можно решить только с помощью двух инструментов: циркуля и линейки без масштабных делений. Линейка.
СХЕМА решения задач на построение. Построение угла, равного данному. Дано: угол А. А Построили угол О. В С О D E Доказать: А = О Доказательство: рассмотрим.
Построение циркулем и линейкой. Примеры задач на построение Учитель математики Харитонова В.П. АОУ МО СОШ 14 г.Долгопрудный, Московская область.
В геометрии выделяют задачи на построение, которые можно решить только с помощью двух инструментов: циркуля и линейки без масштабных делений. Линейка.
Геометрия. 7 класс Задачи на построение. 1 вариант 2 вариант 1. Как называется отрезок, изображенный на рисунке? Проверка домашнего задания.
В геометрии выделяют задачи на построение, которые можно решить только с помощью двух инструментов: циркуля и линейки без масштабных делений. Линейка.
П о с т р о е н и е п е р п е н д и к у л я р н ы х п р я м ы х.
П о с т р о е н и е б и с с е к т р и с ы у г л а.
П о с т р о е н и е у г л а, р а в н о г о д а н н о м у.
Презентация к уроку по геометрии (7 класс) по теме: Урок геометрии в 7 классе на тему:"Задачи на построение"
В геометрии выделяют задачи на построение, которые можно решить только с помощью двух инструментов: I IIII I IIII I IIII I IIII I IIII I IIII I IIII I.
ГЕОМЕТРИЯ 7 КЛАСС Иванова Наталья Юрьевна 264 школа.
Окружность. Окружностью называется геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки, называемой.
Построение треугольника по трем элементам. Выполнила: Ученица 7-б класса Меркушова Виктория.
Построение треугольника по трем элементам. Выполнила: Ученица 7-б класса Меркушова Виктория.
Презентация к уроку: «Построение угла равному данному» Учитель математики МБОУ ООШ 32 Мурасов Рустем Юнусович.
Задачи на построение. Строим циркулем и линейкой! В.А.Орлюк, учитель математики МОУ Петровская СОШ Гурьевского района Калининградской области.
З АДАЧИ НА ПОСТРОЕНИЕ С ПОМОЩЬЮ ЦИРКУЛЯ И ЛИНЕЙКИ Гуряшина Ксения 7 «в» класс МОУ «Лицей 73» Г.Барнаул.
В геометрии специально выделяют задачи на построение, которые решаются только с помощью двух инструментов: ЦИРКУЛЯ И ЛИНЕЙКИ без масштабных делений.
Транксрипт:

Построение окружности. Показ О А

Окружностью называется фигура, состоящая из всех точек плоскости, находящихся от данной точки на данном расстоянии. Данная точка называется центром окружности, а отрезок, соединяющий центр с какой-либо точкой окружности, радиусом окружности. ОА = r – радиус О – центр окружности О А

C B Отрезок, соединяющий две точки окружности, называется ее хордой. Хорда, проходящая через центр окружности, называется диаметром. АС – диаметр ВС – хорда А r = d : 2 d = r · 2

Две точки окружности делят ее на две части, каждая из которых называется дугой окружности. А В

В геометрии выделяют задачи на построение, которые можно решить только с помощью двух инструментов: циркуля и линейки без масштабных делений. Линейка позволяет провести произвольную прямую, а также построить прямую, проходящую через две данные точки; с помощью циркуля можно провести окружность произвольного радиуса, а также окружность с центром в данной точке и радиусом, равным данному отрезку. I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I

Перещепновская школа > 7 класс

А В С Построение угла, равного данному. Дано: угол А. Построим угол, равный данному. О D F Теперь докажем, что построенный угол равен данному. Показ

Построение угла, равного данному. Дано: угол А. А Построили угол О. В С О D F Доказать: А = О Доказательство: рассмотрим треугольники АВС и ОDF. 1.АС=ОF, как радиусы одной окружности. 2.АВ=ОD, как радиусы одной окружности. 3.ВС=DF, как радиусы одной окружности. АВС= ОDF (3 приз.) А = О Показ

Докажем, что О – середина отрезка АВ. Q P В А О Показ Построение середины отрезка

Q P ВА АРQ = BPQ, по трем сторонам = 2 Треугольник АРВ р/б. Отрезок РО является биссектрисой, а значит, и медианой. Тогда, точка О – середина АВ. О Показ Докажем, что О – середина отрезка АВ.

биссектриса Построение биссектрисы угла. Показ

Докажем, что луч АВ – биссектриса А П Л А Н 1.Дополнительное построение. 2.Докажем равенство треугольников АСВ и АDB. 3. Выводы А В С D 1.АС=АD, как радиусы одной окружности. 2.СВ=DB, как радиусы одной окружности. 3.АВ – общая сторона. ? АСВ = АDВ, по III признаку равенства треугольников Луч АВ – биссектриса ? ?

Q P В А М Показ Докажем, что а РМ М a Построение перпендикулярных прямых.

М М a a Докажем, что а РМ 1.АМ=МВ, как радиусы одной окружности. 2.АР=РВ, как радиусы одной окружности АРВ р/б 3. РМ медиана в р/б треугольнике является также ВЫСОТОЙ. Значит, а РМ. ВА Q P Показ

a N М Построение перпендикулярных прямых. Показ Докажем, что а MN М a

a N B A C 1 = 2 12 В р/б треугольнике АМВ отрезок МС является биссектрисой, а значит, и высотой. Тогда, а МN. М Докажем, что а MN Показ Посмотрим на расположение циркулей. АМ=АN=MB=BN, как равные радиусы. МN-общая сторона. MВN= MAN, по трем сторонам

С 1.Построим луч а. 2.Отложим отрезок АВ, равный P 1 Q 1. 3.Построим дугу с центром в т. А и радиусом Р 2 Q 2. 4.Построим дугу с центром в т.В и радиусом P 3 Q 3. В А Треугольник АВС искомый. Обоснуй, используя III признак. Дано: отрезки Р 1 Q 1, Р 2 Q 2, P 3 Q 3. Q1Q1 P1P1 P3P3 Q2Q2 а P2P2 Q3Q3 Показ Построение треугольника по трем сторонам.

Дано:Построение:

D С Построение треугольника по двум сторонам и углу между ними. Угол hk h 1.Построим луч а. 2.Отложим отрезок АВ, равный P 1 Q 1. 3.Построим угол, равный данному. 4.Отложим отрезок АС, равный P 2 Q 2. В А Треугольник АВС искомый. Обоснуй, используя I признак. Дано: Отрезки Р 1 Q 1 и Р 2 Q 2 Q1Q1 P1P1 P2P2 Q2Q2 а k Показ

Дано:Построение:

D С Построение треугольника по стороне и двум прилежащим к ней углам. Угол h 1 k 1 h2h2 1.Построим луч а. 2.Отложим отрезок АВ, равный P 1 Q 1. 3.Построим угол, равный данному h 1 k 1. 4.Построим угол, равный h 2 k 2. В А Треугольник АВС искомый. Обоснуй, используя II признак. Дано: Отрезок Р 1 Q 1 Q1Q1 P1P1 а k2k2 Показ h1h1 k1k1 N

Дано:Построение: