Трапеция Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие не параллельны. Трапеция называется равнобедренной, если ее боковые стороны равны. Параллельные стороны трапеции называются ее основаниями, а непараллельные стороны – боковыми сторонами. Трапеция называется прямоугольной, если один из ее углов прямой.
Средняя линия трапеции Средней линией трапеции называется отрезок, соединяющий середины ее боковых сторон.
Теорема о средней линии трапеции Теорема. Средняя линия трапеции параллельна основаниям и равна их полусумме. Доказательство. Пусть EF – средняя линия трапеции ABCD (AB || CD). Проведем прямую DF и ее точку пересечения с прямой AB обозначим G. Треугольники DFC и GFB равны по второму признаку равенства треугольников (CF = BF по условию, угол 1 равен углу 2, как вертикальные, угол 3 равен углу 4, как накрест лежащие углы). Из равенства этих треугольников следует, что DF = GF и, значит, EF - средняя линия треугольника AGD. Из теоремы о средней линии треугольника следует, что EF параллельна AB и EF = AG. Так как AB || CD, то EF будет параллельна обоим основаниям и кроме того, EF = AG/2 = (AB + BG)/2 = (AB + CD)/2.
Вопрос 1 Какой четырехугольник называется трапецией? Ответ: Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие не параллельны.
Вопрос 2 Какие стороны трапеции называются: а) основаниями; б) боковыми сторонами? Ответ: а) Основаниями трапеции называются ее параллельные стороны; б) боковыми сторонами трапеции называются ее непараллельные стороны.
Вопрос 3 Какая трапеция называется: а) равнобедренной; б) прямоугольной? Ответ: а) Трапеция называется равнобедренной, если ее боковые стороны равны; б) трапеция называется прямоугольной, если один из ее углов прямой.
Вопрос 4 Что называется средней линией трапеции? Ответ: Средней линией трапеции называется отрезок, соединяющий середины ее боковых сторон.
Вопрос 5 Сформулируйте теорему о средней линии трапеции. Ответ: Средняя линия трапеции параллельна основаниям и равна их полусумме.
Упражнение 1 Изобразите равнобедренную трапецию ABCD, три вершины которой даны на рисунке, а четвертая находится в одном из узлов сетки. Ответ:
Упражнение 2 Изобразите прямоугольную трапецию ABCD, три вершины которой даны на рисунке, а четвертая находится в одном из узлов сетки. Ответ:
Упражнение 3 Могут ли углы, прилежащие к основанию трапеции, быть один острым, а другой тупым? Ответ: Да.
Упражнение 4 Может ли у трапеции быть: а) три прямых угла; б) три острых угла? Ответ: а) Нет;б) нет.
Упражнение 5 Докажите, что углы при основании равнобедренной трапеции равны. Доказательство. Пусть ABCD – трапеция, AD не параллельна BC. Докажем, что углы A и B равны. Через вершину C проведем прямую, параллельную AD и обозначим E ее точку пересечения с прямой AB. Четырехугольник AECD – параллелограмм, следовательно, угол BAD равен углу BEC. Треугольник BCE – равнобедренный, следовательно, угол BCE равен углу BEC. Таким образом, в трапеции ABCD угол A равен углу B.
Упражнение 6 Верно ли, что если два угла трапеции равны, то она равнобедренная? Ответ. Нет, она может быть прямоугольной.
Упражнение 7 Верно ли, что если два угла при основании трапеции равны, то она равнобедренная? Ответ. Да.
Упражнение 8 Докажите, что сумма двух противоположных углов равнобедренной трапеции равна 180 о. Доказательство. Пусть ABCD – трапеция, AD не параллельна BC. Докажем, что сумма углов A и С равна 180 о. Действительно, Сумма углов B и C равна 180 о. Угол A равен углу B. Следовательно, сумма углов A и С равна 180 о.
Упражнение 9 Чему равны углы равнобедренной трапеции, если известно, что разность противолежащих углов равна 40 о ? Ответ: 70 о, 110 о, 70 о, 110 о.
Упражнение 10 Докажите, что диагонали равнобедренной трапеции равны. Доказательство. Пусть ABCD – равнобедренная трапеция. Треугольники ABC и BAD равны (AB – общая сторона, BC = AD, угол ABC равен углу BAD. Следовательно, AC = BD.
Упражнение 11 Верно ли, что если диагонали трапеции равны, то она равнобедренная? Ответ. Да.
Упражнение 12 Определите вид четырехугольника, который получится, если последовательно соединить отрезками середины сторон равнобедренной трапеции. Ответ: Ромб.
Упражнение 13 Прямая, проведенная параллельно боковой стороне трапеции через конец меньшего основания, равного 3 см, отсекает треугольник, периметр которого равен 15 см. Найдите периметр трапеции. Ответ: 21 см.
Упражнение 14 Проведите среднюю линию трапеции, изображенной на рисунке. Ответ:
Упражнение 15 Проведите среднюю линию трапеции, изображенной на рисунке. Ответ:
Упражнение 16 Основания трапеции относятся как 5:2, а их разность равна 18 см. Найдите среднюю линию трапеции. Ответ: 21 см.
Упражнение 17 Периметр трапеции равен 50 см, а сумма непараллельных сторон равна 20 см. Найдите среднюю линию трапеции. Ответ: 15 см.
Упражнение 18 Средняя линия трапеции равна 30 см, а меньшее основание равно 20 см. Найдите большее основание. Ответ: 40 см.
Упражнение 19 Периметр равнобедренной трапеции равен 80 см, ее средняя линия равна боковой стороне. Найдите боковую сторону данной трапеции. Ответ: 20 см.
Упражнение 20 Средняя линия трапеции равна 7 см, а одно из ее оснований больше другого на 4 см. Найдите основания трапеции. Ответ: 5 см и 9 см.
Упражнение 21 Основания трапеции относятся как 2 : 3, а средняя линия равна 5 м. Найдите основания. Ответ: 4 м и 6 м.
Упражнение 22 Перпендикуляр, опущенный из вершины тупого угла на большее основание равнобедренной трапеции, делит его на части, имеющие длины 5 см и 2 см. Найдите среднюю линию этой трапеции. Ответ: 5 см.
Упражнение 23 В равнобедренной трапеции большее основание равно 2,7 м, боковая сторона равна 1 м, угол между ними 60 о. Найдите меньшее основание. Ответ: 1,7 м.
Упражнение 24 Cредняя линия трапеции равна 10 см. Одна из диагоналей делит ее на два отрезка, разность которых равна 2 см. Найдите основания этой трапеции. Ответ: 8 см и 12 см.
Упражнение 25 Основания трапеции равны 4 см и 10 см. Найдите отрезки, на которые делит среднюю линию этой трапеции одна из ее диагоналей. Ответ: 2 см и 5 см.
Упражнение 26 Меньшее основание равнобедренной трапеции равно боковой стороне, а диагональ перпендикулярна боковой стороне. Найдите углы трапеции. Ответ: 60 о, 120 о, 60 о, 120 о.
Упражнение 27* Может ли средняя линия трапеции пройти через точку пересечения диагоналей? Решение: Нет. Действительно, пусть ABCD – трапеция, EF – средняя линия, G, H – ее точки пересечения с диагоналями. Тогда EG – средняя линия треугольника ACD и, следовательно, равна половине CD. FH – средняя линия треугольника BCD и, следовательно, равна половине CD. Если бы точки G и H совпадали, то средняя линия EF была бы равна CD. В этом случае трапеция была бы параллелограммом.
Упражнение 28* В выпуклом пятиугольнике ABCDE AE = 4. Середины сторон AB и CD, BC и ED соединены отрезками. Середины H и K этих отрезков снова соединены отрезками. Найдите длину отрезка HK. Решение: Пусть M, N, P, R, L – середины соответствующих сторон. Тогда HK = ML = AE = 1.