§15. Ряды Лорана. P(z)- правильная часть Q(z)- главная часть ряд Лорана
обозначение радиуса сходимости ряда
Круговое кольцо общая область сходимости ряда Лорана
Следствия теоремы Абеля.
При этом полученные ряды также можно дифференцировать и интегрировать почленно любое число раз. 2) Ряд Лорана внутри кольца сходимости
3) 4) Коэффициенты ряда Лорана c n через значения суммы ряда в точке z 0 не определяются! В точке z 0 сумма ряда Лорана не определена!
Теорема 15.1 Если
Доказательство. Возьмем
где C- произвольный замкнутый контур, лежащий в кольце R 2
Т.к. z- внутри R 2
Докажем единственность.
Точная область сходимости ряда Лорана есть R 2