«Построение графика квадратичной функции» (9 класс) Подготовил учитель математики Котов В.А
Цели урока: Образовательные: научиться построению графика квадратичной функции и использованию графика для получения её свойств. Развивающие: развивать логическое мышление, алгоритмическую культуру, внимание, навыки самостоятельной работы с источником информации и самоконтроля, поддерживать интерес к математике. Воспитательные: воспитывать последовательность, ответственность, самостоятельность, настойчивость, дисциплинированность.
Квадратичной функцией называется функция, которую можно задать формулой вида y=ax²+bx+c, где х - независимая переменная, a, b и с - некоторые числа (причём а 0). Например: у = 5 х²+6 х+3, у = -7 х²+8 х-2, у = 0,8 х²+5, у = ¾х²-8 х, у = -12 х² - квадратичные функции
Графиком квадратичной функции является парабола, ветви которой направлены вверх(если а >0) или вниз (если а 0 ). у= -7 х²-х+3 – графиком является парабола, ветви которой направлены вниз (т.к. а=-7, а
Чтобы построить график функции надо: 1. Описать функцию: название функции, что является графиком функции, куда направлены ветви параболы. Пример: у = х²-2 х-3 – квадратичная функция, графиком является парабола, ветви которой направлены вверх (т.к. а=1, а>0 )
Чтобы построить график функции надо: 2. Найти координаты вершины параболы А(m;n) по формулам: ; или n = у(m) т.е. подставить найденное значение абсциссы m в формулу, которой задана функция и вычислить значение. Прямая x=m является осью симметрии параболы. Пример: у = х²-2 х-3 (а = 1; b = -2; с = -3) Найдём координаты вершины параболы n = 1²-2·1-3 = -4 А(1;-4) – вершина параболы. х=1 – ось симметрии параболы.
Чтобы построить график функции надо: 3. Заполнить таблицу значений функции: Прямая x=m является осью симметрии параболы, т.е. точки графика симметричны относительно этой прямой. В таблице расположить вершину в середине таблицы и взять соседние симметричные значения х. Например, следующим образом: *- посчитать значение функции в выбранных значениях х. Пример: у = х²-2 х-3 А(1;- 4) – вершина параболы х=1 – ось симметрии параболы. Составим таблицу значений функции: хm-2m-1mm+1m+2 у**n** х у
У 4 у = х²-2 х х Чтобы построить график функции надо: 4. Построить график функции: - отметить в координатной плоскости точки, координаты которых указаны в таблице; - соединить их плавной линией. х 0123 у
Сформулируйте определение квадратичной функции. Что представляет собой график квадратичной функции? Куда могут быть направлены ветви параболы и от чего это зависит? В какой последовательности нужно строить график квадратичной функции? Если вы затрудняетесь ответить на поставленные вопросы, то можете посмотреть теорию ещё раз. Для этого подведите курсор мыши на значок «домик» и нажмите на левую кнопку мыши. Попробуйте ответить на контрольные вопросы:
Стоит немного отдохнуть от компьютера. Попробуйте построить в тетради график функции у = -2 х²+8 х-3 Если вы забыли последовательность действий, запишите в тетради формулу и перейдите по ссылке план
Постройте график функции у = -2 х²+8 х-3 План построения графика квадратичной функции: 1. Описать функцию: название функции; что является графиком функции; куда направлены ветви параболы 2. Найти координаты вершины параболы А(m;n) по формулам: или n = у(m) 3. Заполнить таблицу значений функции. 4. Построить график функции: отметить в координатной плоскости точки, координаты которых указаны в таблице; соединить их плавной линией.
Проверьте себя. Ваше задание должно быть выполнено следующим образом: у = -2 х²+8 х-3 - квадратичная функция, графиком является парабола, ветви которой направлены вниз (т.к. а=-2, а
Если у вас получилось тоже самое – вы молодец и мы вас поздравляем!!! Вы можете перейти к следующей странице. Если вы допустили ошибку – не огорчайтесь. У вас всё ещё впереди! Вы можете просмотреть объяснение ещё раз, выбрав левой кнопкой мыши значок «домик», Если вы допустили ошибку – не огорчайтесь. У вас всё ещё впереди! Вы можете просмотреть объяснение ещё раз, выбрав левой кнопкой мыши значок «домик», или заглянуть в свой учебник (п.7)
Рассмотрим свойства этой квадратичной функции. (листаем свойства по щелчку мыши) 1. Область определения функции (-;+) Область значений функции (-;5] 2. Нули функции х=0,5 и х=3,5 3. у>0 на промежутке (0,5;3,5) y
Выполните следующую работу в тетрадях по вариантам. Постройте графики функций: I вариант I вариант у = -х²+6 х-8 Укажите ООФ, ОЗФ, нули функции, промежуток возрастания функции. Желаем успеха! II вариант у = -х²-6 х-7 Укажите ООФ, ОЗФ, нули функции, промежуток убывания функции.
Перед продолжением работы запишите домашнее задание, перейдя по ссылке Далее выполните тест. прочитайте задание; прочитайте задание; выполните его устно или, сделав записи в тетради; выполните его устно или, сделав записи в тетради; и выберите правильный ответ левой кнопкой мыши. и выберите правильный ответ левой кнопкой мыши. Д/З
Выполните тест и посчитайте свои правильные ответы в оценочном листе. 1 вопрос: Выберите квадратичную функцию а) б)в)г)
Выполните тест и посчитайте свои правильные ответы в оценочном листе. 2 вопрос: Куда направлены ветви параболы ? Вверх Вверх Вверх Вниз Вниз Вниз
Выполните тест и посчитайте свои правильные ответы в оценочном листе. 3 вопрос: Укажите координаты вершины параболы а) А(3;6) А(3;6) б) А(-1;-17) А(-1;-17) в) А(1;-3) А(1;-3) г) А(1;-1) А(1;-1)
Выполните тест и посчитайте свои правильные ответы в оценочном листе. 4 вопрос: На рисунке показаны графики квадратичных функций. Выберите график функции у= - 4 х²-16 х+1, подведите к нему стрелку и нажмите левую кнопку мыши. у 0 6 х У -6 0 х У -6 0 х у х у 6 0 х у 5 0 2,5 х 2,5
5 вопрос: Укажите формулу квадратичной функции, график которой изображён на рисунке. 1. у = -x 2 +6x у = -x 2 +6x у = -x 2 +6x 2. у = - 3 х²+8 х-11 у = - 3 х²+8 х-11 у = - 3 х²+8 х у = - 4 х²-16 х+1 у = - 4 х²-16 х+1 у = - 4 х²-16 х+1 4. у = х²-6 х у = х²-6 х у = х²-6 х 5. у = х²+6 х у = х²+6 х у = х²+6 х 6. у = 1,2 х²-6 х+5 у = 1,2 х²-6 х+5 у = 1,2 х²-6 х+5 Выполните тест и посчитайте свои правильные ответы в оценочном листе. У -6 0 х
ВЕРНО Вы просто молодец! Продолжайте в том же духе. Для продолжения нажмите кнопку «Далее»
НЕ ВЕРНО Увы! Вы ошиблись! Попробуйте в следующем вопросе выбрать правильный ответ. Для продолжения нажмите кнопку «Далее»
Если вы закончили работу и у вас осталось время до конца урока, перейдите к дополнительному заданию Если вы закончили работу и у вас не осталось времени, нажмите левой кнопкой мыши на значок
Запишите домашнее задание: Алгебра. 9 класс: учебник для общеобразовательных учреждений/[ Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова]; под ред. С.А. Теляковского. – М.: Просвещение, г. Глава I пункт 7 (учить); пункт 1, 2, 5, 6 (повт.) 123, 124 (б, в) Желаем успехов!