Минутная вентиляция -- это общее количество вновь поступившего в дыхательные пути и в легкие воздуха и вышедшего из них в течение одной минуты, что равно.

Презентация:



Advertisements
Похожие презентации
ФИЗИОЛОГИЯ ДЫХАТЕЛЬНОЙ СИСТЕМЫ. ВНЕШНЕЕ ДЫХАНИЕ..
Advertisements

САНКТ-ПЕТЕРБУРГСКАЯ ГОСУДАРСТВЕННАЯ ПЕДИАТРИЧЕСКАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ КАФЕДРА АНЕСТЕЗИОЛОГИИ-РЕАНИМАТОЛОГИИ И НЕОТЛОЖНОЙ ПЕДИАТРИИ ФПК И ПП ГАЗООБМЕН.
Газообмен между атмосферным воздухом и кровью называется внешним дыханием и осуществляется органами дыхания - легкими и внелегочными дыхательными путями.
ТРАНСПОРТ ГАЗОВ. ТЕМА ЛЕКЦИИ:ТРАНСПОРТ ГАЗОВ. РЕГУЛЯЦИЯ ДЫХАНИЯ.
ТЕМА ЛЕКЦИИ: ТРАНСПОРТ ГАЗОВ РЕГУЛЯЦИЯ ДЫХАНИЯ.. Основные этапы газопереноса 1) конвекционное поступление воздуха в воздухоносные пути и диффузия газов.
ДЫХАНИЕ Дыхание – Совокупность физиологических процессов, в результате которых происходит потребление организмом кислорода и выделение углекислого газа.
Тема: «Гистология респираторного отдела легких. Особенности у детей. Газообмен в легких и транспорт газов кровью.» Лектор: доцент Евневич.
Значение дыхания. Органы дыхания Значение дыхания. Органы дыхания.
ФИЗИОЛОГИЯ ДЫХАТЕЛЬНОЙ СИСТЕМЫ. ВНЕШНЕЕ ДЫХАНИЕ..
Учебные задачи: узнать органы, составляющие дыхательную и кровеносную системы человека; познакомиться с последовательностью расположения органов, составляющих.
Строение лёгких. Газообмен в лёгких и тканях. Выполнила ученица 8 класса «А» школы 10 Рыбас Валерия. Выполнила ученица 8 класса «А» школы 10 Рыбас Валерия.
Prezentacii.com ОГРАНЫ ДЫХАНИЯ. КАК ПРАВИЛЬНО ДЫШАТЬ.
ПРЕЗЕНТАЦИЯ ПРОЕКТА ГРУППЫ ДЫХАНИЯ Как мы дышим?.
Органы дыхания, их строение. Дыхательные движения. Тема урока:
Л е г к и е. Лёгкие (лат. pulmo, греч. pneumon) органы воздушного дыхания у человека, всех млекопитающих, птиц, пресмыкающихся, большинства земноводных,
Лекция 12 Внешнее дыхание Основные этапы дыхания. Внешнее дыхание. Основные этапы дыхания. Внешнее дыхание. Механизм вдоха и выдоха. Механизм вдоха и выдоха.
Презентация к уроку по биологии (8 класс) по теме: Презентация "Дыхательная система человека"
Как происходит процесс дыхания с точки зрения физики?
Значение дыхания. Органы дыхательной системы. Основные термины и определения: Дыхание Дыхание – это совокупность процессов, обеспечивающих поступление.
Презентация на тему "Дыхание"
Транксрипт:

Минутная вентиляция -- это общее количество вновь поступившего в дыхательные пути и в легкие воздуха и вышедшего из них в течение одной минуты, что равно дыхательному объему, умноженному на частоту дыхания. В норме дыхательный объем составляет приблизительно 500 мл, а частота дыхания раз в минуту.

Частота дыхания иногда возрастает до дыханий в минуту, а дыхательный объем может достигать величины, близкой к жизненной емкости легких (около мл у молодых здоровых мужчин). Однако при большой частоте дыхания человек обычно не может поддерживать дыхательный объем на уровне, превышающем 40 % жизненной емкости легких (ЖЕЛ), в течение нескольких минут или часов.

Основной функцией системы легочной вентиляции является постоянное обновление воздуха в альвеолах, где он вступает в тесный контакт с кровью в воздух достигает указанной области контакта -- альвеолярная вентиляция. При нормальной, спокойной вентиляции дыхательный объем легочных капиллярах. Скорость, с которой вновь поступивший заполняет дыхательные пути вплоть до терминальных бронхиол, и лишь небольшая часть вдыхаемого воздуха проходит весь путь и контактирует с альвеолами. Новые порции воздуха преодолевают короткую дистанцию от терминальных бронхиол до альвеол путем диффузии. Диффузия обусловлена передвижением молекул, причем молекулы каждого газа перемещаются с большой скоростью среди других молекул. Скорость движения молекул во вдыхаемом воздухе настолько велика, а расстояние от терминальных бронхиол до альвеол столь мало, что газы преодолевают это оставшееся расстояние в считанные доли секунды.

Обычно не менее 30 % вдыхаемого человеком воздуха никогда не достигает альвеол. Этот воздух называют воздухом мертвого пространства, так как он бесполезен для процесса газообмена. В норме мертвое пространство у молодого мужчины с дыхательным объемом в 500 мл составляет примерно 150 мл (около 1 мл на 1 фунт массы тела), или приблизительно 30 % дыхательного объема.

Давление обусловлено постоянным столкновением движущихся молекул с той или иной поверхностью. Следовательно, давление газа, действующего на поверхность дыхательных путей и альвеол, пропорционально суммарной силе столкновений всех молекул, соприкасающихся с поверхностью в любой момент времени. В легких мы имеем дело со смесью газов, в частности с кислородом, азотом и углекислым газом. Скорость диффузии каждого из этих газов прямо пропорциональна его парциальному давлению.

Давление, которое молекулы воды преодолевают, чтобы оторваться от ее поверхности, называется давлением испарения воды. При температуре 37 °С (98,6 °F) давление испарения равно 47 мм рт.ст. Следовательно, как только смесь газов полностью увлажнится, парциальное давление паров воды в газовой смеси также составит 47 мм рт.ст. Давление, которое молекулы воды преодолевают, чтобы оторваться от ее поверхности, называется давлением испарения воды. При температуре 37 °С (98,6 °F) давление испарения равно 47 мм рт.ст. Следовательно, как только смесь газов полностью увлажнится, парциальное давление паров воды в газовой смеси также составит 47 мм рт.ст.

Необходимые для дыхания газы имеют высокую жирорастворимость и, следовательно, хорошо растворимы в клеточных мембранах. Стало быть, эти газы диффундируют через клеточные мембраны при очень слабом сопротивлении. Основным лимитирующим фактором движения газов через ткани является скорость, с которой газы могут диффундировать через тканевую воду.

Респираторная единица состоит из респираторной бронхиолы, альвеолярных ходов, отверстия, открывающегося в альвеолу, и альвеолы. Респираторная единица состоит из респираторной бронхиолы, альвеолярных ходов, отверстия, открывающегося в альвеолу, и альвеолы. В обоих легких имеется около 300 млн альвеол, диаметр каждой альвеолы в среднем составляет примерно 0,2 мм (200 мкм). Стенки альвеол чрезвычайно тонки и тесно соприкасаются с относительно плотной сетью сообщающихся между собой капилляров. В обоих легких имеется около 300 млн альвеол, диаметр каждой альвеолы в среднем составляет примерно 0,2 мм (200 мкм). Стенки альвеол чрезвычайно тонки и тесно соприкасаются с относительно плотной сетью сообщающихся между собой капилляров. Ввиду большой распространенности капиллярного сплетения движение крови возле альвеол описывается как "сплошной лист" протекающей крови. Мембрана, через которую осуществляется газообмен между альвеолярным воздухом и кровью, известна как респираторная, или легочная, мембрана. Ввиду большой распространенности капиллярного сплетения движение крови возле альвеол описывается как "сплошной лист" протекающей крови. Мембрана, через которую осуществляется газообмен между альвеолярным воздухом и кровью, известна как респираторная, или легочная, мембрана. Для того чтобы кислород прошел из альвеол в легочное капиллярное русло, он должен проникнуть через четыре отдельных слоя, часто называемых в совокупности альвеолярно- капиллярной, или респираторной, мембраной. Эти четыре слоя включают следующее. Для того чтобы кислород прошел из альвеол в легочное капиллярное русло, он должен проникнуть через четыре отдельных слоя, часто называемых в совокупности альвеолярно- капиллярной, или респираторной, мембраной. Эти четыре слоя включают следующее. Слой жидкости, омывающей альвеолу. Она называется альвеолярной жидкостью и содержит в себе сурфактант, уменьшающий поверхностное натяжение. Слой жидкости, омывающей альвеолу. Она называется альвеолярной жидкостью и содержит в себе сурфактант, уменьшающий поверхностное натяжение. Альвеолярный эпителий, состоящий из очень тонкого слоя эпителиальных клеток и базальной мембраны. Альвеолярный эпителий, состоящий из очень тонкого слоя эпителиальных клеток и базальной мембраны. Очень ограниченное интерстициальное пространство между альвеолярным эпителием и капиллярной мембраной. Очень ограниченное интерстициальное пространство между альвеолярным эпителием и капиллярной мембраной. Капиллярная эндотелиальная мембрана и ее базальная мембрана, сливающаяся во многих местах с альвеолярной базальной мембраной. Капиллярная эндотелиальная мембрана и ее базальная мембрана, сливающаяся во многих местах с альвеолярной базальной мембраной. Несмотря на такое количество слоев, общая толщина респираторной мембраны в некоторых местах составляет всего лишь 0,2 мкм, а в среднем -- 0,63 мкм. Несмотря на такое количество слоев, общая толщина респираторной мембраны в некоторых местах составляет всего лишь 0,2 мкм, а в среднем -- 0,63 мкм. Диффузия газов через респираторную мембрану

Факторы, влияющие на диффузию газов через респираторную мембрану Факторы, определяющие скорость прохождения газа через респираторную мембрану, таковы: Факторы, определяющие скорость прохождения газа через респираторную мембрану, таковы: 1) толщина мембраны; 1) толщина мембраны; 2) площадь поверхности мембраны; 2) площадь поверхности мембраны; 3) коэффициент диффузии газа в воде данной мембраны; 3) коэффициент диффузии газа в воде данной мембраны; 4) разница давления по обе стороны мембраны. 4) разница давления по обе стороны мембраны. Толщина респираторной мембраны иногда увеличивается, обычно в результате накопления отечной жидкости в интерстициальном пространстве. Кроме того, некоторые легочные заболевания вызывают фиброз легких, при котором отдельные участки респираторной мембраны могут еще больше утолщаться. Поскольку скорость диффузии через мембрану обратно пропорциональна ее толщине, любой фактор, увеличивающий толщину мембраны более чем в 2 или 3 раза по сравнению с нормой, может существенно нарушить оксигенацию крови. Диффузия практически никогда не представляет проблемы для углекислого газа. Толщина респираторной мембраны иногда увеличивается, обычно в результате накопления отечной жидкости в интерстициальном пространстве. Кроме того, некоторые легочные заболевания вызывают фиброз легких, при котором отдельные участки респираторной мембраны могут еще больше утолщаться. Поскольку скорость диффузии через мембрану обратно пропорциональна ее толщине, любой фактор, увеличивающий толщину мембраны более чем в 2 или 3 раза по сравнению с нормой, может существенно нарушить оксигенацию крови. Диффузия практически никогда не представляет проблемы для углекислого газа. Площадь поверхности респираторной мембраны может значительно уменьшаться при многих различных состояниях, таких как ателектаз или резекция легочной ткани. При эмфиземе многие альвеолы сливаются друг с другом при исчезновении альвеолярных стенок. Вновь образовавшиеся альвеолярные полости значительно больше первоначальных, однако общая площадь поверхности респираторной мембраны значительно сокращается. Когда общая площадь поверхности легких уменьшается примерно на одну треть или одну четверть нормы, обмен газов через мембрану в значительной степени замедляется даже в условиях покоя. При спортивных соревнованиях и других физических нагрузках даже небольшое уменьшение дыхательной поверхности легких может стать серьезной помехой для адекватного газообмена. Разница в давлении по обе стороны респираторной мембраны является по сути дела разницей между парциальным давлением газа в альвеолярах и парциальным давлением этого газа в крови. При дыхании комнатным воздухом нормальная артериально-альвеолярная разница для кислорода составляет мм рт.ст. Для углекислого газа нормальная разница равна нулю. Площадь поверхности респираторной мембраны может значительно уменьшаться при многих различных состояниях, таких как ателектаз или резекция легочной ткани. При эмфиземе многие альвеолы сливаются друг с другом при исчезновении альвеолярных стенок. Вновь образовавшиеся альвеолярные полости значительно больше первоначальных, однако общая площадь поверхности респираторной мембраны значительно сокращается. Когда общая площадь поверхности легких уменьшается примерно на одну треть или одну четверть нормы, обмен газов через мембрану в значительной степени замедляется даже в условиях покоя. При спортивных соревнованиях и других физических нагрузках даже небольшое уменьшение дыхательной поверхности легких может стать серьезной помехой для адекватного газообмена. Разница в давлении по обе стороны респираторной мембраны является по сути дела разницей между парциальным давлением газа в альвеолярах и парциальным давлением этого газа в крови. При дыхании комнатным воздухом нормальная артериально-альвеолярная разница для кислорода составляет мм рт.ст. Для углекислого газа нормальная разница равна нулю.

Диффузионная способность респираторной (альвеолярно- капиллярной) мембраны. Способность респираторной мембраны к газообмену между альвеолярами и кровью в легких может быть выражена количественно при использовании диффузионной способности, которая определяется как объем газа, диффундирующего через мембрану в течение 1 мин при разнице давления в 1 мм рт.ст. У среднего молодого взрослого диффузионная способность для кислорода в покое составляет в среднем 21 мл/мин на 1 мм рт.ст. Средняя разница давления кислорода по обе стороны респираторной мембраны при нормальном, спокойном дыхании составляет примерно 12 мм рт.ст. Умножение этого параметра на диффузионную способность (21 * 12) дает общее количество (около 250 мл) кислорода, диффундирующего через респираторную мембрану каждую минуту, что приблизительно равно скорости, с которой средний взрослый поглощает кислород в условиях покоя. Способность респираторной мембраны к газообмену между альвеолярами и кровью в легких может быть выражена количественно при использовании диффузионной способности, которая определяется как объем газа, диффундирующего через мембрану в течение 1 мин при разнице давления в 1 мм рт.ст. У среднего молодого взрослого диффузионная способность для кислорода в покое составляет в среднем 21 мл/мин на 1 мм рт.ст. Средняя разница давления кислорода по обе стороны респираторной мембраны при нормальном, спокойном дыхании составляет примерно 12 мм рт.ст. Умножение этого параметра на диффузионную способность (21 * 12) дает общее количество (около 250 мл) кислорода, диффундирующего через респираторную мембрану каждую минуту, что приблизительно равно скорости, с которой средний взрослый поглощает кислород в условиях покоя. При большой физической нагрузке или при других состояниях, существенно увеличивающих легочный кровоток и альвеолярную вентиляцию, диффузионная способность кислорода у молодых мужчин возрастает до максимума -- примерно до 65 мл/мин на 1 мм рт.ст., что втрое превосходит диффузионную способность в состоянии покоя. Подобное повышение обусловлено рядом различных факторов, включающих: 1) раскрытие прежде "спавших" легочных капилляров, что увеличивает поверхность крови, в которую кислород может диффундировать; 2) расширение легочных капилляров, которые уже были открыты, что еще больше увеличивает площадь поверхности. При большой физической нагрузке или при других состояниях, существенно увеличивающих легочный кровоток и альвеолярную вентиляцию, диффузионная способность кислорода у молодых мужчин возрастает до максимума -- примерно до 65 мл/мин на 1 мм рт.ст., что втрое превосходит диффузионную способность в состоянии покоя. Подобное повышение обусловлено рядом различных факторов, включающих: 1) раскрытие прежде "спавших" легочных капилляров, что увеличивает поверхность крови, в которую кислород может диффундировать; 2) расширение легочных капилляров, которые уже были открыты, что еще больше увеличивает площадь поверхности. Диффузионная способность двуокиси углерода не определена, так как этот газ настолько быстро диффундирует через респираторную мембрану, что средняя разница между РСо, в крови легочных капилляров и в альвеолах составляет менее 1 мм рт.ст. Поскольку диффузионный коэффициент углекислого газа в 20 раз выше, чем у кислорода, можно ожидать, что диффузионная способность углекислого газа в покое составит примерно мл/мин на 1 мм рт.ст., а при физической нагрузке -- около мл/мин на 1 мм рт.ст. Диффузионная способность двуокиси углерода не определена, так как этот газ настолько быстро диффундирует через респираторную мембрану, что средняя разница между РСо, в крови легочных капилляров и в альвеолах составляет менее 1 мм рт.ст. Поскольку диффузионный коэффициент углекислого газа в 20 раз выше, чем у кислорода, можно ожидать, что диффузионная способность углекислого газа в покое составит примерно мл/мин на 1 мм рт.ст., а при физической нагрузке -- около мл/мин на 1 мм рт.ст. Способность кислорода к диффузии может быть рассчитана по следующим параметрам: 1) альвеолярное POl; 2) POl в крови легочных капилляров; 3) скорость поглощения Способность кислорода к диффузии может быть рассчитана по следующим параметрам: 1) альвеолярное POl; 2) POl в крови легочных капилляров; 3) скорость поглощения

Воздух на уровне моря при среднем барометрическом давлении в 760 мм рт.ст. содержит приблизительно 20,93 % кислорода и 0,04 углекислого газа; остальное приходится в основном на азот. Следовательно, парциальное давление кислорода и углекислого газа в воздухе на уровне моря составляет соответственно 159 и 0,3 мм рт.ст. Воздух на уровне моря при среднем барометрическом давлении в 760 мм рт.ст. содержит приблизительно 20,93 % кислорода и 0,04 углекислого газа; остальное приходится в основном на азот. Следовательно, парциальное давление кислорода и углекислого газа в воздухе на уровне моря составляет соответственно 159 и 0,3 мм рт.ст. Концентрация газов в альвеолярном воздухе отличается от таковой атмосферного воздуха по следующим причинам: 1) сухой атмосферный воздух, поступающий в дыхательные пути, увлажняется на пути к альвеолам; 2) альвеолярный воздух при каждом дыхании лишь частично замещается атмосферным; 3) кислород постоянно абсорбируется из альвеолярного воздуха; 4) углекислый газ в легких постоянно диффундирует из крови в альвеолы. Концентрация газов в альвеолярном воздухе отличается от таковой атмосферного воздуха по следующим причинам: 1) сухой атмосферный воздух, поступающий в дыхательные пути, увлажняется на пути к альвеолам; 2) альвеолярный воздух при каждом дыхании лишь частично замещается атмосферным; 3) кислород постоянно абсорбируется из альвеолярного воздуха; 4) углекислый газ в легких постоянно диффундирует из крови в альвеолы. Увлажнение вдыхаемого воздуха Увлажнение вдыхаемого воздуха Воздух, поступая в верхние дыхательные пути, согревается и насыщается водой, что уменьшает общее парциальное давление вдыхаемых газов на 47 мм рт.ст., т. е. примерно до 713 мм рт.ст. Таким образом, давление вдыхаемого кислорода (PlOl) в трахее и бронхах падает до (713) (0,2093), или до 149 мм рт.ст. (см. табл. 7.1). Если пациент вдыхает 60 % кислород [фракция вдыхаемого кислорода (ЛО;) = 0,6], то РЮ1 в трахее и бронхах составляет (713)(0,6), или 428 мм рт.ст. Воздух, поступая в верхние дыхательные пути, согревается и насыщается водой, что уменьшает общее парциальное давление вдыхаемых газов на 47 мм рт.ст., т. е. примерно до 713 мм рт.ст. Таким образом, давление вдыхаемого кислорода (PlOl) в трахее и бронхах падает до (713) (0,2093), или до 149 мм рт.ст. (см. табл. 7.1). Если пациент вдыхает 60 % кислород [фракция вдыхаемого кислорода (ЛО;) = 0,6], то РЮ1 в трахее и бронхах составляет (713)(0,6), или 428 мм рт.ст. Функциональная остаточная емкость легких, которая определяется количеством воздуха, остающегося в легких в конце нормального выдоха, составляет примерно мл. Более того, с каждым новым дыхательным объемом в альвеолы поступает лишь 350 мл нового воздуха и выдыхается такое же количество старого альвеолярного воздуха. Следовательно, количество альвеолярного воздуха, замещаемого новым атмосферным воздухом, при каждом дыхании составляет всего % общего количества газа, обычно присутствующего в легких. При нормальной альвеолярной вентиляции примерно половина старого альвеолярного воздуха заменяется в течение 17 с. Если скорость альвеолярной вентиляции у данного лица составляет лишь половину нормы, то половина объема газа заменяется в течение 34 с; если же скорость вентиляции вдвое превышает норму, то на замену половины объема уходит около 8 с. Функциональная остаточная емкость легких, которая определяется количеством воздуха, остающегося в легких в конце нормального выдоха, составляет примерно мл. Более того, с каждым новым дыхательным объемом в альвеолы поступает лишь 350 мл нового воздуха и выдыхается такое же количество старого альвеолярного воздуха. Следовательно, количество альвеолярного воздуха, замещаемого новым атмосферным воздухом, при каждом дыхании составляет всего % общего количества газа, обычно присутствующего в легких. При нормальной альвеолярной вентиляции примерно половина старого альвеолярного воздуха заменяется в течение 17 с. Если скорость альвеолярной вентиляции у данного лица составляет лишь половину нормы, то половина объема газа заменяется в течение 34 с; если же скорость вентиляции вдвое превышает норму, то на замену половины объема уходит около 8 с.