ПОДГОТОВИЛИ СТУДЕНТЫ 3 КУРСА Крупянский Юрий и Товпенец Никита.

Презентация:



Advertisements
Похожие презентации
Тиристоры Выполнили студентки гр Лепко А., Лобанова А.
Advertisements

Тиристоры Докладчики: студенты группы Гардер Александр Стафеев Федор Лебедев Константин Начать просмотр.
ТИРИСТОРЫ Докладчики: Цеков А.В. Панюков Ю.А.. Тиристором называют полупроводниковый прибор, состоящий из четырех последовательно чередующихся областей.
* ** - это полупроводниковый прибор с тремя и более р-n переходами, вольт-амперная характеристика которого имеет участок с отрицательным.
Презентация по предмету: «Микрооптоэлектроника» Выполнили студенты гр Никульшин Вячеслав Ильина Виктория ПетрГУ 2012.
Тиристоры Выполнили студенты гр Кемпи А. Пархоменко А.
Тиристоры. Выполнил: Карабутов В.А, группа
Презентация по предмету: «Микрооптоэлектроника» Выполнил: Кобяков В. И. гр Тема: Тиристоры ПетрГУ 2011.
ТИРИСТОРЫ Выполнили : Тимохов Е. Г., Гоголева А. Н., Ламкин Д. С. Преподаватель : Гуртов В. А.
Полупроводниковые и микроэлектронные приборы Тиристоры.
Тиристоры Костяков Алексей Группа Тиристор представляет собой полупроводниковый прибор с тремя или более p-n-переходами.
Диоды на основе p-n перехода Полупроводниковым диодом называют нелинейный электронный прибор с двумя выводами. Существуют следующие типы полупроводниковых.
Презентация по теме: «Полупроводниковые диоды» Выполнили: Бармин Р.А. Гельзин И.Е.
Характеристики идеального диода на основе p-n перехода. Полупроводниковый диод Нелинейный электронный прибор с двумя выводами. В зависимости от внутренней.
Процессы в биполярном транзисторе Выполнил: Соколов А. А
Биполярные транзисторы. 1. Общие сведения. Транзистор –полупроводниковый прибор с двумя электронно- дырочными переходами, предназначенный для усиления.
Компьютерная электроника Лекция 8. Устройство биполярного транзистора.
Биполярный транзистор. Процессы в биполярном транзисторе.
Электронно-дырочный переход. В современной электронной технике полупроводниковые приборы играют исключительную роль. За последние три десятилетия они почти.
Устройство полевого транзистора Полевой транзистор - это полупроводниковый прибор, усилительные свойства которого обусловлены потоком основных носителей,
Транксрипт:

ПОДГОТОВИЛИ СТУДЕНТЫ 3 КУРСА Крупянский Юрий и Товпенец Никита

Тири́стор полупроводниковый прибор, выполненный на основе монокристалла полупроводника с четырёхслойной структурой р-n-p-n-типа, обладающий в прямом направлении двумя устойчивыми состояниями состоянием низкой проводимости (тиристор заперт) и состоянием высокой проводимости (тиристор открыт). В обратном направлении тиристор обладает только запирающими свойствами. Т.е тиристор это управляемый диод. Тиристоры подразделяются на тринисторы, динисторы и симисторы. Перевод тиристора из закрытого состояния в открытое в электрической цепи осуществляется внешним воздействием на прибор: либо воздействие напряжением (током), либо светом (фототиристор). Тиристор имеет нелинейную разрывную вольтамперную характеристику (ВАХ).

Основная схема тиристорной структуры представляет собой четырёхполюсный p-n-p-n прибор, содержащий три последовательно соединённых p-n перехода J1, J2, J3. Контакт к внешнему p-слою называется анодом, к внешнему n-слою катодом. В общем случае p-n-p-n прибор может иметь два управляющих электрода (базы), присоединённых к внутренним слоям. Прибор без управляющих электродов называется диодным тиристором (или динистором). Прибор с одним управляющим электродом называют триодным тиристором или тринистором (или просто тиристором).

ВАХ тиристора (с управляющими электродами или без них) приведена на рис 2. Она имеет несколько участков: Между точками 0 и 1 находится участок, соответствующий высокому сопротивлению прибора прямое запирание. В точке 1 происходит включение тиристора. Между точками 1 и 2 находится участок с отрицательным дифференциальным сопротивлением. Участок между точками 2 и 3 соответствует открытому состоянию (прямой проводимости). В точке 2 через прибор протекает минимальный удерживающий ток I h. Участок между 0 и 4 описывает режим обратного запирания прибора. Участок между 4 и 5 режим обратного пробоя.

В режиме обратного запирания к аноду прибора приложено напряжение, отрицательное по отношению к катоду; переходы J1 и J3 смещены в обратном направлении, а переход J2 смещён в прямом. В этом случае большая часть приложенного напряжения падает на одном из переходов J1 или J3 (в зависимости от степени легирования различных областей). Пусть это будет переход J1. В зависимости от толщины W n1 слоя n1 пробой вызывается лавинным умножением (толщина обеднённой области при пробое меньше W n1 ) либо проколом (обеднённый слой распространяется на всю область n1, и происходит смыкание переходов J1 и J2).

Режим прямого запирания При прямом запирании напряжение на аноде положительно по отношению к катоду и обратно смещён только переход J2(коллекторный). Переходы J1 и J3 смещены в прямом направлении. Большая часть приложенного напряжения падает на переходе J2. Через переходы J1 и J3 в области, примыкающие к переходу J2, инжектируются неосновные носители, которые уменьшают сопротивление перехода J2, увеличивают ток через него и уменьшают падение напряжения на нём. При повышении прямого напряжения ток через тиристор сначала растёт медленно, что соответствует участку 0-1 на ВАХ. В этом режиме тиристор можно считать запертым, так как сопротивление перехода J2 всё ещё очень велико. По мере увеличения напряжения на тиристоре снижается доля напряжения, падающего на J2, и быстрее возрастают напряжения на J1 и J3, что вызывает дальнейшее увеличение тока через тиристор и усиление инжекции неосновных носителей в область J2. При некотором значении напряжения (порядка десятков или сотен вольт), называется напряжением переключения V BF (точка 1 на ВАХ), процесс приобретает лавинообразный характер, тиристор переходит в состояние с высокой проводимостью (включается), и в нём устанавливается ток, определяемый напряжением источника и сопротивлением внешней цепи

В области малых токов основная причина зависимости α от тока I связана с рекомбинацией в эмиттерном переходе. При наличии рекомбинационных центров в области пространственного заряда эмиттерного перехода прямой ток такого перехода в области малых прямых смещений – рекомбинационный J рек. Зависимость этого тока от напряжения экспоненциальная, но показатель экспоненты в два раза меньше, чем для диффузионного тока J pD. По мере роста прямого напряжения на p-n переходе диффузионная компонента тока J pD начинает превалировать над рекомбинационной. В терминах эффективности эмиттера это эквивалентно возрастанию эффективности эмиттера, а следовательно, и увеличению коэффициента передач α = γ·χ. На рисунке 6 показана зонная диаграмма эмиттерного перехода, которая иллюстрирует конкуренцию двух токов – рекомбинационного и диффузионного в токе эмиттера, а на рисунке 8 – типичная зависимость коэффициента передачи α от тока эмиттера I э при наличии рекомбинационных центров в ОПЗ p-n перехода.

Другой физический механизм, приводящий к накоплению объемных зарядов в базах тиристора, связан с лавинным умножением в коллекторном переходе. При больших значениях обратного напряжения на p-n переходе величина электрического поля Е в области пространственного заряда может приблизиться к значению, соответствующему напряжению лавинного пробоя. В этом случае на длине свободного пробега λ электрон или дырка набирают энергию qλE, большую, чем ширина запрещенной зоны полупроводника qλE > Е g и вызывает генерацию новой электронно-дырочной пары. Это явление аналогично лавинному пробою в стабилитронах. Таким образом, умножение в коллекторе может служить причиной накопления объемных зарядов в базах тиристора. С формальной точки зрения, умножение в коллекторе эквивалентно росту коэффициента передачи и величине коллекторного тока.

Тиристор с двумя выводами работает как двухполюсник – динистор Тиристор с управляющим электродом - тринистор Тиристор с управляющим электродом - тринистор p1n1p2n2

Симиcтop (от симметричный тиристор) - полупроводниковый прибор, используемый для управления цепями с переменным напряжением. В электронике он рассматривается как управляемый выключатель. В закрытом состоянии проводимость между управляемыми электродами отсутствует. При подаче управляющего тока на управляющий электрод симистора, возникает проводимость между управляемыми электродами. Причём симистор в открытом состоянии проводит ток в обоих направлениях

Электронные ключи Управляемые выпрямители Преобразователи (инверторы) Регуляторы мощности (триммеры)