Равнобедренные треугольники Треугольник называется равнобедренным, если у него … две стороны равны (рис. 1). Эти равные стороны называются …боковыми сторонами,

Презентация:



Advertisements
Похожие презентации
Равнобедренные треугольники Треугольник называется равнобедренным, если у него … две стороны равны (рис. 1). Эти равные стороны называются …боковыми сторонами,
Advertisements

Равнобедренные треугольники Треугольник называется равнобедренным, если у него … две стороны равны (рис. 1). Эти равные стороны называются …боковыми сторонами,
Равнобедренные треугольники Треугольник называется равнобедренным, если у него … две стороны равны (рис. 1). Эти равные стороны называются …боковыми сторонами,
Равнобедренные треугольники Треугольник называется равнобедренным, если у него две стороны равны (рис. 1). Эти равные стороны называются боковыми сторонами,
Признак равнобедренного треугольника Теорема. (Признак равнобедренного треугольника.) Если в треуголь­нике два угла равны, то он равнобедренный. Доказательство.
Теорема 1 Внешний угол произвольного треугольника больше каждого внутреннего, не смежного с ним. Доказательство. Пусть АВС – произвольный треугольник.
Материал по геометрии (8 класс) по теме: задачки на доказательство по геометрии
Третий признак равенства треугольников Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники.
Прямоугольные треугольники Треугольник называется прямоугольным, если … у него есть прямой угол. Гипотенузой называется сторона прямоугольного треугольника…
Внешний угол произвольного треугольника больше каждого внутреннего, не смежного с ним. Доказательство. Пусть АВС – произвольный треугольник. Рассмотрим,
Прямоугольные треугольники Треугольник называется прямоугольным, если … у него есть прямой угол. Гипотенузой называется сторона прямоугольного треугольника…
На рисунке угол DBC равен углу DAC, BO = AO. Докажите, что угол C равен углу D. Решение. Треугольник ABO равнобедренный и, следовательно, OAB = OBA. Учитывая.
Третий признак равенства треугольников Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники.
Треугольники Треугольник называется остроугольным если у него все углы острые (рис. 1). Треугольник называется прямоугольным если у него есть прямой угол.
Теорема Каждая сторона треугольника меньше суммы двух других сторон. Доказательство. Рассмотрим треугольник АВС. Отложим на продолжении стороны АВ отрезок.
Подобие треугольников Два треугольника называются подобными, если углы одного соответственно равны углам другого и соответствующие стороны пропорциональны.
BC = CD, CM - биссектриса BCD CM – медиана, B = D.
Р е к о м е н д а ц и и к р е ш е н и ю з а д а ч и
Теорема 1 Каждая сторона треугольника меньше суммы двух других сторон. Доказательство. Рассмотрим треугольник АВС. Отложим на продолжении стороны АВ отрезок.
Средняя линия треугольника Урок 1. I. Устная работа 1) Может ли треугольник быть невыпуклым? 2) Где расположена точка пересечения высот прямоугольного.
Транксрипт:

Равнобедренные треугольники Треугольник называется равнобедренным, если у него … две стороны равны (рис. 1). Эти равные стороны называются …боковыми сторонами, а третья сторона –основанием. Треугольник называется равносторонним, если у него … все стороны равны (рис. 2).

Теорема В равнобедренном треугольнике биссектриса, проведенная к основанию, является одновременно медианой и высотой. Доказательство. Пусть ABC – равнобедренный треугольник, AC = BC, CD – биссектриса. Тогда треугольник ACD равен треугольнику BCD по первому признаку равенства треугольников (АС = ВС, СD – общая сторона, ACD = BCD). Следовательно, имеют место равенства AD = BD, ADC = BDC. Первое из этих равенств означает, что CD является медианой данного треугольника, второе – что CD является его высотой.

Упражнение 1 На рисунке AB = BC. Докажите, что 1 = 2. Решение: Треугольник ABC – равнобедренный, так как AB = BC. Следовательно, BAC = BCA, как углы при основании равнобедренного треугольника. Отсюда следует, что 1 = 2 как смежные углы соответственно равным углам.

Упражнение 2 В треугольнике CDE 1= 2. Верно ли утверждение о том, что это равнобедренный треугольник? Ответ: Да.

Упражнение 3 Ответ: а), б), в) Да. В треугольнике FGH 1 = 2 = 3. Верно ли утверждение о том, что это треугольник: а) равнобедренный; б) равносторонний; в) правильный?

Упражнение 4 Ответ: 0,8 м. Периметр равнобедренного треугольника равен 2 м, а основание - 0,4 м. Найдите боковую сторону.

Упражнение 5 Ответ: 3,5 м. Периметр равнобедренного треугольника равен 7,5 м, а боковая сторона - 2 м. Найдите основание.

Упражнение 6 Ответ: а) 3,2 м; 6, 2 м; 6,2 м; б) 7,2 м; 4,2 м; 4,2 м. Периметр равнобедренного треугольника равен 15,6 м. Найдите его стороны, если: а) основание меньше боковой стороны на 3 м; б) основание больше боковой стороны на 3 м.

Упражнение 7 Ответ: 6 см; 16 см; 16 см. Основание и боковая сторона равнобедренного треугольника относятся как 3:8. Найдите стороны этого треугольника, если его периметр равен 38 см.

Упражнение 8 Ответ: 15 м. В равнобедренном треугольнике АВС с основанием АС проведена медиана BD. Найдите ее длину, если периметр треугольника АВС равен 50 м, а треугольника АВD - 40 м.

Упражнение 9 Доказательство: Пусть треугольник ABC равнобедренный (AC = BC). N, M, K – середины сторон. Тогда треугольники AMN и BMK равны по первому признаку и, следовательно, NM = MK, т.е. треугольник NMK равнобедренный. Докажите, что середины сторон равнобедренного треугольника являются вершинами также равнобедренного треугольника.

Упражнение 10 В треугольнике АВС АВ = АС и 1= 2. Докажите, что 3 = 4. Решение: Треугольники ABE и ACD равны по второму признаку равенства треугольников (AB = AC, BAE = CAD, ABE = ACD). Следовательно, AEB = ADC и, значит, 3 = 4.

Упражнение 11 Решение: Треугольники ACD и AEB равны по второму признаку равенства треугольников (AD = AE, CAD = BAE, ADC = AEB). Следовательно, CD = BE и, значит, BD = CE. На рисунке AD = AE, CAD = BAE. Докажите, что BD = CE.

Упражнение 12 Доказательство: Пусть ABC – равнобедренный треугольник (AB = BC), AN и CM – медианы. Тогда AM = CN и треугольники ACM и CAN равны по первому признаку. Следовательно, AN = CM. По рисунку докажите, что медианы равнобедренного треугольника, проведенные к его боковым сторонам, равны.

Упражнение 13 На рисунке 1 = 2, 5 = 6. Докажите, что 3 = 4. Доказательство: Треугольники ABC и ABD равны по второму признаку равенства треугольников. Следовательно, BC = BD. Треугольник BCD равнобедренный и, значит, 3 = 4.

Упражнение 14 Доказательство: Треугольники ADF и BED равны по первому признаку равенства треугольников (AD = BE, AF = BD, угол A равен углу B). Следовательно, DF = ED. Аналогично доказывается, что ED = FE. На сторонах правильного треугольника АВС отложены равные отрезки AD, BE и CF. Точки D, E и F соединены отрезками. Докажите, что треугольник DEF правильный.

Упражнение 15 Доказательство: Треугольники ADF и BED равны по первому признаку равенства треугольников (AD = BE, AF = BD, угол A равен углу B). Следовательно, DF = ED. Аналогично доказывается, что ED = FE. На продолжении сторон правильного треугольника АВС отложены равные отрезки AD, BE и CF. Докажите, что треугольник DEF правильный.