Обыкновенные дроби Наглядное представление дроби Обыкновенная (или простая) дробь запись рационального числа в виде m/n. Горизонтальная или косая черта обозначает знак деления, в результате чего получается частное. Делимое называется числителем дроби, а делитель знаменателем.
Правильные и неправильные дроби Правильной называется дробь, у которой модуль числителя меньше модуля знаменателя. Дробь, не являющаяся правильной, называется неправильной, и представляет рациональное число, по модулю большее или равное единице. Правильной называется дробь, у которой модуль числителя меньше модуля знаменателя. Дробь, не являющаяся правильной, называется неправильной, и представляет рациональное число, по модулю большее или равное единице. Например, дроби Например, дроби правильные дроби, в то время как неправильные дроби. Всякое целое число можно представить в виде неправильной обыкновенной дроби со знаменателем 1
Смешанные дроби Дробь, записанная в виде целого числа и правильной дроби, называется смешанной дробью и понимается как сумма этого числа и дроби. Любое рациональное число можно записать в виде смешанной дроби. В противоположность смешанной дроби, дробь, содержащая лишь числитель и знаменатель, называется простой. Дробь, записанная в виде целого числа и правильной дроби, называется смешанной дробью и понимается как сумма этого числа и дроби. Любое рациональное число можно записать в виде смешанной дроби. В противоположность смешанной дроби, дробь, содержащая лишь числитель и знаменатель, называется простой. Например, Например,
Значение дроби и основное свойство дроби Дробь является всего лишь записью числа. Одному и тому же числу могут соответствовать разные дроби, как обыкновенные, так и десятичные. Дробь является всего лишь записью числа. Одному и тому же числу могут соответствовать разные дроби, как обыкновенные, так и десятичные. Если умножить числитель и знаменатель дроби на одинаковую величину: Если умножить числитель и знаменатель дроби на одинаковую величину: то значение дроби останется прежним, хотя дроби разные. Пример: И обратно, если числитель и знаменатель заданной дроби имеют общий делитель, то обе части можно разделить на него; такая операция называется сокращением дроби Пример: