Разбор заданий второй части Репетиционный ЕГЭ-2012 «Содружество школ ЮАО г. Москвы» РЕПЕТИЦИЯ 2 14.04.2012.

Презентация:



Advertisements
Похожие презентации
Разбор заданий второй части Репетиционный ЕГЭ-2012 «Содружество школ ЮАО г. Москвы» РЕПЕТИЦИЯ
Advertisements

Геометрические задачи типа «С4» по материалам ЕГЭ – 2010 МОУ «Инсарская средняя общеобразовательная школа 1» Чудаева Елена Владимировна, учитель математики,
Решение планиметрических задач С4 Наумова Л.Г. МОУ СОШ 3 Школа абитуриента 18 ноября 2010 г. по материалам ЕГЭ – 2010.
Решение стереометрических задач методом координат.
«Г ЕОМЕТРИЧЕСКИЕ ЗАДАЧИ В ГИА И ЕГЭ 2012 ГОДА » Бисярина Н. В., учитель математики.
Тема: Тема: Угол между плоскостями. Урок 3 «Решаем С2 ЕГЭ» Разработала: Куракова Е. В., учитель математики МБОУ СОШ с УИОП 38 им. Е. А. Болховитинова 11.
11 класс. Цель урока: Показать, как используется скалярное произведение векторов при решении задач на вычисление углов между двумя прямыми, между прямой.
ЗАДАЧИ ЕГЭ (С2). Расстояние от точки до прямой, не содержащей эту точку, есть длина отрезка перпендикуляра, проведенного из этой точки на прямую. Расстояние.
Тема урока: Геометрическая интерпретация при решении уравнений, содержащих знак модуля МОУ «Осташевская средняя общеобразовательная школа», учитель математики.
Разбор заданий второй части Репетиционный ЕГЭ-2012 «Содружество школ ЮАО г. Москвы» РЕПЕТИЦИЯ
Подготовка к ЕГЭ. В единичном кубе A...D1 найдите расстояние от точки A до прямой BD1. Ответ:
1 Задачи раздела С 2 Расстояния и углы в пространстве А А1А1 B B1B1 C C1C1 D D1D1 1 1 Елескина Н.Н. МОУ «Лицей 1» Киселёвск, январь, 2011.
A(2;3;4) z x y O | | | ||| | | | | | | | | | | | | | 1.Объясните построение точки А по ее координатам (2; 3; 4) 2. Назовите координаты точек B, C, D, K.
Получим систему (1;0;–1) n Вектор нормали плоскости СDА 1 : Дан прямоугольный параллелепипед ABCDA 1 B 1 C 1 D 1, длины ребер которого АВ = 2, AD = AA.
1 Координаты точки A(2;3;4) z x y O | | | ||| | | | | | | | | | | | | | 1. Объясните построение точки А по ее координатам (2; 3; 4) 2. Назовите координаты.
Решение планиметрических задач в заданиях ГИА 2012 учитель математики МБОУ СОШ 6 г.Зарайска Андреева Ирина Васильевна.
Разбор заданий второй части Репетиционный ЕГЭ-2012 «Содружество школ ЮАО г. Москвы» РЕПЕТИЦИЯ
Задание. Назови вектора и запиши их обозначения. С D M N F E K.
Нормальным вектором плоскости (или нормалью плоскости) называют вектор, перпендикулярный данной плоскости.p n.
Издательство «Легион» Задания ЕГЭ в рамках новой модели докладчик: Кулабухов Сергей Юрьевич.
Транксрипт:

Разбор заданий второй части Репетиционный ЕГЭ-2012 «Содружество школ ЮАО г. Москвы» РЕПЕТИЦИЯ

РЕШЕНИЕ С1 (чет) Пусть

С1 (чет)

РЕШЕНИЕ

ОТВЕТ

РЕШЕНИЕ С1 (нечет)

ОТВЕТ

НОРМЫ ОЦЕНОК С1 1 балл 1 балл – решение уравнения (бесконечное множество ответов) + 1 балл + 1 балл – выделение конкретных ответов из промежутка (мax 2 балла)

С2 В правильной шестиугольной призме ABCDEFB 1 C 1 D 1 E 1 F 1, у которой все ребра равны 1, найти расстояние между прямыми ВA 1 и FE 1

С ,5 Найдем высоту параллелограм ма, используя «площадной подход»

С2 В правильной шестиугольной призме ABCDEFB 1 C 1 D 1 E 1 F 1, у которой все ребра равны 1, найти расстояние между прямыми ВA 1 и CB 1

С2

С2 3 1

С2 3 1 Найдем высоту параллелограмма, используя «площадной подход»

С2 В правильной шестиугольной призме ABCDEFB 1 C 1 D 1 E 1 F 1, у которой все ребра равны 1, найти расстояние между прямыми ВA 1 и CB 1 МЕТОД КООРДИНАТ х у z

С2 Справочные материалы Типичные задачи МЕТОДА КООРДИНАТ х у z 1. Уравнение плоскости по трем точкам Общий вид уравнения плоскости При d=1

С2 Справочные материалы Типичные задачи МЕТОДА КООРДИНАТ х у z 2. Уравнение плоскости по точке и вектору нормали Общий вид уравнения плоскости При с=-1 где Найдем d из условия

НОРМЫ ОЦЕНОК С2 1 балл 1 балл – обоснованный переход к планиметрической задаче + 1 балл + 1 балл – доведение решения до верного ответа (мax 2 балла)

РЕШЕНИЕ С3 (нечет) 0 a 2 -5 Однородное неравенство 2 степени Разделим на положительное число (1) При корни вспомогательного квадратного уравнения

РЕШЕНИЕ С3 (нечет) x 2 -4 Сравним значения правой и левой частей неравенства Сравним значения (2)(2) положительно на ОДЗ так как (1) (3) (2)(2)(2)(2)

РЕШЕНИЕ С3 (чет) (1) Оценим каждый множитель в левой части

РЕШЕНИЕ С3 (чет) (2) (1) Сравним значения (3) x 3 (2)

НОРМЫ ОЦЕНОК С3 1 балл 1 балл – решение одного неравенства + 1 балл + 1 балл – решение второго неравенства (мax 3 балла) + 1 балл + 1 балл – пересечение решений неравенств

D A B C D A B C Решение. O МN М N O Пусть О – точка пересечения биссектрис. По условию значит М лежит между точками В и N. Возможны два случая. 1) точка О – лежит внутри параллелограмма; Рассмотрим первый случай. 2) точка О – лежит вне параллелограмма. 12 В параллелограмме ABCD AB=12, биссектрисы углов при стороне AD делят сторону ВС точками M и N, так что BM:MN=1:7. Найдите ВС. С4

D A B C Решение. O МN Пусть О – точка пересечения биссектрис. По условию значит М лежит между точками В и N. Рассмотрим первый случай. 12 1) ABN – равнобедренный, т.к. ВNА= NAD- накрест лежащие; значит ВNА= ВAN и AB=BN=12, АN – биссектриса А, тогда Найдем MN=BN-BM=12-1,5=10,5. 2) Аналогично, DMC – равнобедренный, MC=DC=12. Тогда NC= MC-MN=12-10,5=1,5. 3) Значит, ВС=ВМ+MN+NC=13,5. 1,5 10,51,5 В параллелограмме ABCD AB=12, биссектрисы углов при стороне AD делят сторону ВС точками M и N, так что BM:MN=1:7. Найдите ВС. С4

Решение. Рассмотрим второй случай: точка О – лежит вне параллелограмма. 1) ABМ– равнобедренный, т.к. Тогда АВ=ВМ=12. 2) Аналогично DNC– равнобедренный, 3) Значит, ВС=ВN+NC=96+12=108. D A B C М N O 12 ВMА= MAD- накрест лежащие; значит ВMА= ВAM. АМ – биссектриса А, По условию значит Ответ: 13,5 или 108. тогда NC=DC=12. С4

С4 В параллелограмме ABCD AB=12, биссектрисы углов при стороне AD делят сторону ВС точками M и N, так что BM:MN=1:7. Найдите ВС.

Удачи на экзамене