Проверяемые требования (умения) Уметь выполнять действия с геометрическими фигурами, координатами и векторами.

Презентация:



Advertisements
Похожие презентации
Проверяемые требования (умения) Уметь выполнять действия с геометрическими фигурами, координатами и векторами Прототипов заданий В9 – 175.
Advertisements

Семинар для учителей математики Ногинского района Московской области г. Составила учитель математики МБОУ СОШ 83 имени Евгения Табакова Герасименко.
Задание В9 содержит задачи на нахождение объемов и площадей поверхностей пространственных фигур. Оно проверяет развитие пространственных представлений.
Задание В 9 содержит задачи на нахождение объемов и площадей поверхностей пространственных фигур. Оно проверяет развитие пространственных представлений.
ПЛОЩАДЬ ПОВЕРХНОСТИ Площадью поверхности многогранника по определению считается сумма площадей, входящих в эту поверхность многоугольников. Площадь поверхности.
1. Диагональ куба равна. Найдите его объем. Ответ. 8. Решение. Если ребро куба равно a, то его диагональ равна. Отсюда следует, что если диагональ куба.
ПЛОЩАДЬ ПОВЕРХНОСТИ МНОГОГРАННИКА Площадью поверхности многогранника по определению считается сумма площадей, входящих в эту поверхность многоугольников.
1 Задания В 9 ЕГЭ Диагональ куба равна Найдите его объем 2 Ответ: 8 Решение Если ребро куба равно a, то его диагональ равна. Отсюда следует,
Математические диктанты. Двугранный, трёхгранный углы. Многогранник. Вопрос 1. Сколько рёбер у двугранного угла? 2. Сколько рёбер у трёхгранного угла?
Задачи В10 и В13. Найдите объём многогранника, изображённого на рисунке (все двугранные углы многогранника прямые). Найдите объем пространственного креста,
ПЛОЩАДЬ ПОВЕРХНОСТИ Площадью поверхности многогранника по определению считается сумма площадей, входящих в эту поверхность многоугольников. Площадь поверхности.
Диктант Призма. Найдите площадь полной поверхности, объем (таблица) 1.Прямая призма 2.Наклонная призма 3.Прямоугольный параллелепипед 4.Пирамида 5.Цилиндр.
Радиус основания первого конуса в 3 раза больше, чем радиус основания второго конуса, а образующая первого конуса в 2 раза меньше, чем образующая второго.
В-9 Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 5,5.Найти объем параллелепипеда. объем параллелепипеда.
Задачи для 11 Б класса Ребята! Просмотреть можно все слайды, решить задачи на слайде 11 и 12.
(Геометрия 11) Цель презентации: научится формулировать правила и применять их..
ГЕОМЕТРИЧЕСКИЕ ТЕЛА. Классификация ГЕОМЕТРИЧЕСКИЕ ТЕЛА МНОГОГРАННИКИ ТЕЛА ВРАЩЕНИЯ ПРИЗМА ПИРАМИДА ПРАВИЛЬНЫЕ МНОГОГРАННИКИ ЦИЛИНДР КОНУС ШАР.
ПЛОЩАДЬ ПОВЕРХНОСТИ ШАРА Площадь поверхности шара, радиуса R, выражается формулой.
ОБЪЕМ ФИГУР В ПРОСТРАНСТВЕ Объем – величина, аналогичная площади и сопоставляющая фигурам в пространстве неотрицательные действительные числа. За единицу.
Геометрия Виды геометрических фигур и их измерения 1. Треугольник - геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех.
Транксрипт:

Проверяемые требования (умения) Уметь выполнять действия с геометрическими фигурами, координатами и векторами

Умения по КТ (кодификатор требований) Решать простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов); использовать при решении стереометрических задач планиметрические факты и методы

Содержание задания В9 по КЭС (кодификатор элементов содержания) Прямые и плоскости в пространстве5.2.3 Параллельность плоскостей, признаки и свойства Перпендикулярность прямой и плоскости, признаки и свойства; перпендикуляр и наклонная; теорема о трех перпендикулярах Перпендикулярность плоскостей, признаки и свойства Параллельное проектирование. Изображение пространственных фигур Многогранники Призма, ее основания, боковые ребра, высота, боковая поверхность; прямая призма; правильная призма Параллелепипед; куб; симметрии в кубе, в параллелепипеде Пирамида, ее основание, боковые ребра, высота, боковая поверхность; треугольная пирамида; правильная пирамида Сечения куба, призмы, пирамиды Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр) Тела и поверхности вращения Цилиндр. Основание, высота, боковая поверхность, образующая, развертка Конус. Основание, высота, боковая поверхность, образующая, развертка Шар и сфера, их сечения Измерение геометрических величин Площадь треугольника, параллелограмма, трапеции, круга, сектора Площадь поверхности конуса, цилиндра, сферы Объем куба, прямоугольного параллелепипеда, пирамиды, призмы, цилиндра, конуса, шара

Памятка ученику В задании B9 ученику предложат решить простейшие стереометрические задачи на вычисление площадей поверхностей или объемов многогранников и тел вращения.

ОБЪЕМ ПРЯМОУГОЛЬНОГО ПАРАЛЛЕЛЕПИПЕДА ОБЪЕМ НАКЛОННОГО ПАРАЛЛЕЛЕПИПЕДА

ОБЪЕМ ПИРАМИДЫ

ОБЪЕМ КОНУСА ОБЪЕМ УСЕЧЕННОГО КОНУСА

Объем цилиндра

ОБЪЕМ ШАРА ОБЪЕМ ШАРОВОГО СЕГМЕНТА ОБЪЕМ ШАРОВОГО СЕКТОРА

ПЛОЩАДЬ ПОВЕРХНОСТИ Площадью поверхности многогранника по определению считается сумма площадей, входящих в эту поверхность многоугольников. Площадь поверхности призмы состоит из площади боковой поверхности и площадей оснований. Площадь поверхности пирамиды состоит из площади боковой поверхности и площади основания.

ПЛОЩАДЬ ПОВЕРХНОСТИ ЦИЛИНДРА

ПЛОЩАДЬ ПОВЕРХНОСТИ КОНУСА

ПЛОЩАДЬ ПОВЕРХНОСТИ ШАРА ПЛОЩАДЬ ПОВЕРХНОСТИ ШАРОВОГО СЕГМЕНТА ПЛОЩАДЬ ПОВЕРХНОСТИ ШАРОВОГО ПОЯСА

Прототип задания B9 ( 27014) Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда. Решение Так как прямоугольный параллелепипед описан около цилиндра, то его основание – квадрат со стороной, равной диаметру круга, являющегося основанием цилиндра. V=abc, a=b=2, c=1 V=221=4 Ответ:4. Так как прямоугольный параллелепипед описан около цилиндра, то его основание – квадрат со стороной, равной диаметру круга, являющегося основанием цилиндра. V=abc, a=b=2, c=1 V=221=4 Ответ:4.

Задания для самостоятельного решения Проверка 1)Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1,5. Найдите объем параллелепипеда. 2)Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 6. Найдите объем параллелепипеда. 3)Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 8,5. Найдите объем параллелепипеда. 1)13,5 2)864 3)2456,5

Прототип задания B9 (27043) Решение Прямоугольный параллелепипед, в который вписан шар, будет являться кубом, ребро которого равно диаметру шара. V=а 3 а=2 => 222=8. Ответ: 8. Прямоугольный параллелепипед, в который вписан шар, будет являться кубом, ребро которого равно диаметру шара. V=а 3 а=2 => 222=8. Ответ: 8. Прямоугольный параллелепипед описан около сферы радиуса 1. Найдите его объем.

Задания для самостоятельного решения Проверка 1)2197 2)3375 3)4913 1)2197 2)3375 3)4913 1)Прямоугольный параллелепипед описан около сферы радиуса 6,5. Найдите его объем. 2)Прямоугольный параллелепипед описан около сферы радиуса 7,5. Найдите его объем. 3)Прямоугольный параллелепипед описан около сферы радиуса 8,5. Найдите его объем.

Прототип задания B9 (27044) Решение =8 Ответ: =8 Ответ: 8. Найдите объем многогранника, изображенного на рисунке (все двугранные углы многогранника прямые).

Задания для самостоятельного решения Проверка 1)36 2)39 3)18 1)36 2)39 3)18 Найдите объем многогранника, изображенного на рисунке (все двугранные углы многогранника прямые). 1)2)3)

Прототип задания B9 (27046) Решение V 1 =πr 2 h; V 2 = π(2r) 2 h V 1 =V 2 π r 2 16=π(2r) 2 h π r 2 16=π4r 2 h h=4. Ответ: 4. V 1 =πr 2 h; V 2 = π(2r) 2 h V 1 =V 2 π r 2 16=π(2r) 2 h π r 2 16=π4r 2 h h=4. Ответ: 4. В цилиндрическом сосуде уровень жидкости достигает 16 см. На какой высоте будет находиться уровень жидкости, если ее перелить во второй сосуд, диаметр которого в 2 раза больше первого?

Задания для самостоятельного решения Проверка 1)3 2)2 3)4 1)3 2)2 3)4 1)В цилиндрическом сосуде уровень жидкости достигает 27 см. На какой высоте будет находиться уровень жидкости, если ее перелить во второй сосуд, диаметр которого в 3 раза больше первого? 2)В цилиндрическом сосуде уровень жидкости достигает 8 см. На какой высоте будет находиться уровень жидкости, если ее перелить во второй сосуд, диаметр которого в 2 раза больше первого? 3)В цилиндрическом сосуде уровень жидкости достигает 64 см. На какой высоте будет находиться уровень жидкости, если ее перелить во второй сосуд, диаметр которого в 4 раза больше первого?

Прототип задания B9 (27043) Решение V=a 3 ; 8=a 3 ; а=2 S=6a 2 S=24. Ответ: 24 V=a 3 ; 8=a 3 ; а=2 S=6a 2 S=24. Ответ: 24 Объем куба равен 8. Найдите площадь его поверхности.

Задания для самостоятельного решения Проверка Ответ: 1)54; 2)96; 3)0.24; 4)30 1) Объем куба равен 27. Найдите площадь его поверхности. 2) Объем куба равен 64. Найдите площадь его поверхности. 3) Объем куба равен Найдите площадь его поверхности. 4) Объем куба равен 55. Найдите площадь его поверхности.

Прототип задания B9 (27043) Решение V 1 =1/3πr 2 h V 2 =1/3πr 2 (1/3 h) = 1/3 V 1 Ответ: в 3 раза. V 1 =1/3πr 2 h V 2 =1/3πr 2 (1/3 h) = 1/3 V 1 Ответ: в 3 раза. Во сколько раз уменьшится объем конуса, если его высоту уменьшить в 3 раза?

Задания для самостоятельного решения Проверка Ответ: 1)6 ; 2)4; 3) 1,5; 4)6,5 Ответ: 1)6 ; 2)4; 3) 1,5; 4)6,5 1)Во сколько раз уменьшится объем конуса, если его высоту уменьшить в 6 раз? 2)Во сколько раз уменьшится объем конуса, если его высоту уменьшить в 4 раза? 3)Во сколько раз уменьшится объем конуса, если его высоту уменьшить в 1.5 раза? 4)Во сколько раз уменьшится объем конуса, если его высоту уменьшить в 6.5 раза?