ПЛОЩАДЬ ПОВЕРХНОСТИ МНОГОГРАННИКА Площадью поверхности многогранника по определению считается сумма площадей, входящих в эту поверхность многоугольников.

Презентация:



Advertisements
Похожие презентации
ПЛОЩАДЬ ПОВЕРХНОСТИ Площадью поверхности многогранника по определению считается сумма площадей, входящих в эту поверхность многоугольников. Площадь поверхности.
Advertisements

ПЛОЩАДЬ ПОВЕРХНОСТИ Площадью поверхности многогранника по определению считается сумма площадей, входящих в эту поверхность многоугольников. Площадь поверхности.
Упражнение 1 Чему равна площадь поверхности куба с ребром 1? Ответ: 6.
Решение задний В Площадь поверхности куба равна 18. Найдите его диагональ А В С D A1A1 B1B1 C1C1 D1D1 Пусть ребро куба равно а.
ОБЪЕМ ФИГУР В ПРОСТРАНСТВЕ Объем – величина, аналогичная площади и сопоставляющая фигурам в пространстве неотрицательные действительные числа. За единицу.
Задание В9 содержит задачи на нахождение объемов и площадей поверхностей пространственных фигур. Оно проверяет развитие пространственных представлений.
ОБЪЕМ ФИГУР В ПРОСТРАНСТВЕ Объем – величина, аналогичная площади и сопоставляющая фигурам в пространстве неотрицательные действительные числа. За единицу.
Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Объем параллелепипеда равен 6. Найдите площадь его поверхности. Задача.
1 Задания В 9 ЕГЭ Диагональ куба равна Найдите его объем 2 Ответ: 8 Решение Если ребро куба равно a, то его диагональ равна. Отсюда следует,
Отрезок AB длины 1 вращается вокруг прямой c, параллельной этому отрезку и отстоящей от него на расстояние, равное 2. Найдите площадь поверхности вращения.
Упражнение 1 Найдите диагональ прямоугольного параллелепипеда, ребра которого, выходящие из одной вершины, равны 2, 3, 6. Ответ: 7.
1. Диагональ куба равна. Найдите его объем. Ответ. 8. Решение. Если ребро куба равно a, то его диагональ равна. Отсюда следует, что если диагональ куба.
Задачи В10 и В13. Найдите объём многогранника, изображённого на рисунке (все двугранные углы многогранника прямые). Найдите объем пространственного креста,
ОБЪЕМ ФИГУР В ПРОСТРАНСТВЕ Объем – величина, аналогичная площади и сопоставляющая фигурам в пространстве неотрицательные действительные числа. За единицу.
Радиус основания первого конуса в 3 раза больше, чем радиус основания второго конуса, а образующая первого конуса в 2 раза меньше, чем образующая второго.
Задание В 9 содержит задачи на нахождение объемов и площадей поверхностей пространственных фигур. Оно проверяет развитие пространственных представлений.
Материал для подготовки к ЕГЭ (ГИА) по алгебре (11 класс) по теме: Презентация для подготовки к ЕГЭ по математике В 10
ОБЪЕМ ФИГУР В ПРОСТРАНСТВЕ Объем – величина, аналогичная площади и сопоставляющая фигурам в пространстве неотрицательные действительные числа. За единицу.
ПЛОЩАДЬ ПОВЕРХНОСТИ ШАРА Площадь поверхности шара, радиуса R, выражается формулой.
Решение заданий В11 (часть 1) по материалам открытого банка задач ЕГЭ по математике 2013 года МБОУ СОШ 5 – «Школа здоровья и развития» г. Радужный Автор:
Транксрипт:

ПЛОЩАДЬ ПОВЕРХНОСТИ МНОГОГРАННИКА Площадью поверхности многогранника по определению считается сумма площадей, входящих в эту поверхность многоугольников. Площадь поверхности призмы состоит из площади боковой поверхности и площадей оснований. Площадь поверхности пирамиды состоит из площади боковой поверхности и площади основания.

ПЛОЩАДЬ ПОВЕРХНОСТИ ЦИЛИНДРА Теорема. Площадь поверхности цилиндра, радиус основания которого равен R и образующая равна b, выражается формулой

ПЛОЩАДЬ ПОВЕРХНОСТИ КОНУСА Теорема. Площадь поверхности конуса, радиус основания которого равен R и образующая равна b, выражается формулой

ПЛОЩАДЬ ПОВЕРХНОСТИ ШАРА Площадь поверхности шара, радиуса R, выражается формулой

Упражнение 1 Чему равна площадь поверхности куба с ребром 1? Ответ: 6.

Упражнение 2 Как изменится площадь поверхности куба, если каждое его ребро увеличить в: а) 2 раза; б) 3 раза; в) n раз? Ответ: Увеличится в: а) 4 раза; б) 9 раз; в) n 2 раз.

Упражнение 3 Найдите площадь поверхности прямоугольного параллелепипеда ABCDA 1 B 1 C 1 D 1, ребра которого, выходящие из одной вершины, равны 5, 4, 3. Ответ: 94.

Упражнение 4 Во сколько раз уменьшится площадь поверхности прямоугольного параллелепипеда, если все его ребра уменьшить в 2 раза? Ответ: 4.

Упражнение 5 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2. Каким должно быть третье ребро, выходящее из той же вершины, чтобы площадь поверхности этого параллелепипеда равнялась 40? Ответ: 4.

Найдите площадь поверхности многогранника, изображенного на рисунке, все двугранные углы которого прямые. Ответ. 22. Решение. Поверхность многогранника состоит из двух квадратов площади 4, четырех прямоугольников площади 2 и двух невыпуклых шестиугольников площади 3. Следовательно, площадь поверхности многогранника равна 22. Упражнение 6

Найдите площадь поверхности многогранника, изображенного на рисунке, все двугранные углы которого прямые. Ответ. 22. Решение. Поверхность многогранника состоит из двух квадратов площади 4, четырех прямоугольников площади 2, и двух невыпуклых шестиугольников площади 3. Следовательно, площадь поверхности многогранника равна 22. Упражнение 7

Найдите площадь поверхности многогранника, изображенного на рисунке, все двугранные углы которого прямые. Ответ. 22. Решение. Поверхность многогранника состоит из двух квадратов площади 4, четырех прямоугольников площади 2 и двух невыпуклых шестиугольников площади 3. Следовательно, площадь поверхности многогранника равна 22. Упражнение 8

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). Ответ. 38. Решение. Поверхность многогранника состоит из квадрата площади 9, семи прямоугольников площади которых равны 3, и двух невыпуклых восьмиугольников площади которых равны 4. Следовательно, площадь поверхности многогранника равна 38. Упражнение 9

Найдите площадь поверхности многогранника, изображенного на рисунке, все двугранные углы которого прямые. Ответ. 24. Решение. Поверхность многогранника состоит из трех квадратов площади 4, трех квадратов площади 1 и трех невыпуклых шестиугольников площади 3. Следовательно, площадь поверхности многогранника равна 24. Упражнение 10

Найдите площадь поверхности многогранника, изображенного на рисунке, все двугранные углы которого прямые. Ответ. 92. Решение. Поверхность многогранника состоит из двух квадратов площади 16, прямоугольника площади 12, трех прямоугольников площади 4, двух прямоугольников площади 8, и двух невыпуклых восьмиугольников площади 10. Следовательно, площадь поверхности многогранника равна 92. Упражнение 11

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). Ответ. 48. Упражнение 12

В каждой грани куба с ребром 6 см проделали сквозное квадратное отверстие со стороной квадрата 2 см. Найдите площадь поверхности оставшейся части. Ответ Упражнение 13

Упражнение 14 Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 5 см, а высота 10 см. Ответ: 300 см 2.

Упражнение 15 Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 3 см и 4 см, высота призмы равна 10 см. Найдите площадь поверхности данной призмы. Ответ: 132 см 2.

Упражнение 16 Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями 6 см и 8 см и боковым ребром 10 см. Ответ: 248 см 2.

Упражнение 17 Чему равна площадь поверхности правильного тетраэдра с ребром 1? Ответ:

Упражнение 18 Как изменятся площади боковой и полной поверхностей пирамиды, если все её рёбра: а) увеличить в 2 раза; б) уменьшить в 5 раз? Ответ: а) Увеличатся в 4 раза; б) уменьшатся в 25 раз.

Упражнение 19 Развёртка поверхности правильной треугольной пирамиды представляет собой равносторонний треугольник, площадь которого равна 80 см 2. Найдите площадь грани пирамиды. Ответ: 20 см 2.

Упражнение 20 Чему равна площадь поверхности октаэдра с ребром 1? Ответ:

Упражнение 21 Чему равна площадь поверхности икосаэдра с ребром 1? Ответ:

Упражнение 22 Найдите площадь поверхности многогранника, составленного из двух единичных кубов, вершина одного из которых расположена в центре другого, как показано на рисунке. Ответ: 10,5.

Упражнение 23 Найдите площадь поверхности многогранника, составленного из двух единичных кубов, две вершины одного из которых расположены в центрах граней другого. Ответ: 9,5.

Упражнение 24 Радиус основания цилиндра равен 2 м, высота - 3 м. Найдите площадь боковой поверхности цилиндра. Ответ: м 2.

Упражнение 25 Площадь осевого сечения цилиндра равна 4 м 2. Найдите площадь боковой поверхности цилиндра. Ответ: м 2.

Упражнение 26 Осевое сечение цилиндра - квадрат. Площадь основания равна 1. Найдите площадь поверхности цилиндра. Ответ: 6.

Упражнение 27 Площадь большого круга шара равна 3 см 2. Найдите площадь поверхности шара. Ответ: 12 см 2.

Упражнение 28 Как изменится площадь поверхности шара, если увеличить радиус шара в: а) 2 раза; б) 3 раза; в) n раз? Ответ: Увеличится в: а) 4 раза; б) 9 раз; в) n 2 раз.

Упражнение 29 Площади поверхностей двух шаров относятся как 4 : 9. Найдите отношение их диаметров. Ответ: 2:3.

Радиусы двух шаров равны 6 и 8. Найдите радиус шара, площадь поверхности которого равна сумме площадей их поверхностей. Ответ. 10. Решение. Площади поверхностей данных шаров равны и. Их сумма равна. Следовательно, радиус шара, площадь поверхности которого равна этой сумме, равен 10. Упражнение 30