Галимов Ф.Х. Туймазинский р-н Дайте определение арксинуса.

Презентация:



Advertisements
Похожие презентации
Дайте определение арксинуса. Дайте определение арккосинуса.
Advertisements

Решим уравнение х 2 =5 графический. Для этого найдем точки пересечения графиков двух функций: у=х 2 и у=5. x y y=5 у=х 2 х1=х1= х 2 =-
Действия с функциями арксинус, арккосинус, арктангенс и арккотангенс.
Решение простейших тригонометрических уравнений. Учитель Горбунова В.А «Без уравнения нет математики как средства познания природы» академик П. С.Александров.
Повторим значения синуса косинуса у π/2 90° 120° 2π/3 1 π/3 60° 135° 3π/4 π/4 45° 150° 5π/6 1/2 π/6 30° 180° π ° x /2 ½ 2π 360 (cost)
Решение простейших тригонометрических уравнений Единичная окружность х у cos t sin t 0 y = arcsin x E(y)= [] y = arccos x E(y) = [0; ] D(y) = [-1;1]
Решение тригонометрических уравнений. Виды тригонометрических уравнений.
«Решение простейших тригонометрических уравнений».
Решение тригонометрических уравнений. Найти правильный ответ COS X = a COS X = 1 SIN X = a COS X = 0 COS X = - 1 SIN X = 1 SIN X = - 1 SIN X = 0 X = (-1)
Презентация к уроку по алгебре (10 класс) по теме: Методы решения тригонометрических уравнений, урок алгебры в 10 классе
Арксинус, арккосинус, арктангенс и арккотангенс Демонстрационный материал 10 класс.
Решение тригонометрических уравнений и неравенств Решение тригонометрических уравнений и неравенств Автор: Семенова Елена Юрьевна.
Повторим значения синуса косинуса у π/2 90° 120° 2π/3 1 π/3 60° 135° 3π/4 π/4 45° 150° 5π/6 1/2 π/6 30° 180° π ° x /2 ½ 2π 360 (cost)
Определение арксинуса и арккосинуса числа а. х у 0 1 Арксинус а b y = sin x Функция y = sin x возрастает на отрезке Для любого в промежутке существует.
Тригонометрия. Единичная окружность А В С D M K E H L P.
Решение тригонометрических уравнений и неравенств Решение тригонометрических уравнений и неравенств Автор: Семенова Елена Юрьевна.
Максимова Хиония Гурьевна, учитель математики МОУ «Аликовская СОШ» Решение простейших тригонометрических уравнений.
Тригонометрические уравнения. Уравнение называется тригонометрическим если оно содержит переменную под знаком тригонометрической функции Уравнение называется.
Презентация на тему: Обратные тригонометрические функции Подготовила: ученица 11 класса «Д» Шунайлова Марина Руководители: Крагель Т.П., Гремяченская Т.В.
Решение простейших тригонометрических уравнений.
Транксрипт:

Галимов Ф.Х. Туймазинский р-н Дайте определение арксинуса

Галимов Ф.Х. Туймазинский р-н Дайте определение арккосинуса

Галимов Ф.Х. Туймазинский р-н Дайте определение арктангенса

Галимов Ф.Х. Туймазинский р-н Дайте определение арккотангенса

Галимов Ф.Х. Туймазинский р-н π/4 -π/4 π/3 -π/3 0 не существует

Галимов Ф.Х. Туймазинский р-н π/4 3π/4 π/6 5π/6 не существует π/2

Галимов Ф.Х. Туймазинский р-н -π/6 π/6 5π/6 π/4 π/3 3π/4 π/4 -π/4 π/6 -π/3

Галимов Ф.Х. Туймазинский р-н Имеют ли смысл выражения? Почему?

Галимов Ф.Х. Туймазинский р-н Новая тема. Решение простейших тригонометрических уравнений

Галимов Ф.Х. Туймазинский р-н 1. Уравнение cos x=a Рассмотрим графическое решение этого уравнения. Для этого построим два графика y=cos x и y=a π y 0 x 1 -π-π y=cosx y=a При а>1 или a

Галимов Ф.Х. Туймазинский р-н π y 0 x 1 -π-π y=a y=a При aЄ[-1;1] уравнение cos x=a имеет бесконечное множество решений. Мы можем записать одно из решений для х Є[0; π]. x 1 =arccos a Другие решения выразим через это решение. x 2 =-arccos a x 3 =arccos a-2π -2π +2π x 4 =-arccos a+2π Функция y=cos x имеет период 2π, поэтому остальные решения отличаются от х 1 и х 2 на 2πn, где nЄZ. Таким образом все решения уравнения cos x=a записываются в виде x=±arccos a+2 πn, nЄZ

Галимов Ф.Х. Туймазинский р-н π y 0 x 1 -π-π y=1 Рассмотрим частные случаи решения уравнения cos x=a 1. cos x=1 x= π/2 Остальные решения повторяются через 2πn, поэтому x= 2πn, где nЄZ 2. cos x=0 x= 0 Остальные решения повторяются через πn, поэтому x= π/2 +πn, где nЄZ 3. cos x=-1 Остальные решения повторяются через 2πn, поэтому x= π+ 2πn, где nЄZ x=π

Галимов Ф.Х. Туймазинский р-н 1. Уравнение sin x=a Рассмотрим графическое решение этого уравнения. Для этого построим два графика y=sin x и y=a π y 0 x 1 -π-π y=a Аналогично, при a>1 или a

Галимов Ф.Х. Туймазинский р-н π y 0 x 1 -π-π y=a При aЄ[-1;1] уравнение sin x=a имеет бесконечное множество решений. Мы можем записать одно из решений для х Є[- π/2; π/2]. x 1 =arcsin a Другие решения выразим через это решение. x 2 = π- arcsin a Так-как функция y=sin x имеет период 2π, остальные решения отличаются от этих двух на 2πn, где nЄZ. Получаем две группы решении x 1 =arcsin a+ 2πn, x 2 = π -arcsin a+ 2πn, где nЄZ,

Галимов Ф.Х. Туймазинский р-н Получаем две группы решении x 1 =arcsin a+ 2πn, x 2 = π -arcsin a+ 2πn, где nЄZ. Эти две группы можно записать одной формулой x=(-1) n arcsin a+ πn, где nЄZ

Галимов Ф.Х. Туймазинский р-н π y 0 x 1 -π-π y=1 Рассмотрим частные случаи решения уравнения sin x=a 1. sin x=1 x= π/2 Остальные решения повторяются через 2πn, поэтому x= π/2+ 2πn, где nЄZ 2. sin x=0 x= 0 Остальные решения повторяются через πn, поэтому x= πn, где nЄZ 3. sin x=-1 Остальные решения повторяются через 2πn, поэтому x= -π/2+ 2πn, где nЄZ x=- π/2

Галимов Ф.Х. Туймазинский р-н Решите уравнения

Галимов Ф.Х. Туймазинский р-н

С решением уравнении tg x=a и ctg x=a попробуйте разобраться самостоятельно. Для этого в папке урок2 откройте веб страницу index и следуйте инструкциям. Д/р:п.9, 136(в,г), 137(в,г), 138(в,г), 139(в,г).