Список литературы 1. Гнеденко б.В. Курс теории вероятностей. – М.: Физматгиз, 1988. 2. Ивченко Г.И., Медведев Ю.И. Математическая статистика. 2-е изд.

Презентация:



Advertisements
Похожие презентации
Ташкентский автомобильно-дорожный институт Кафедра «Высшая математика» Ст.преп. Н.Рузматова.
Advertisements

1 Оглавление Способы задания случайных величин Числовые характеристики Основные дискретные распределения Основные непрерывные распределения Предельные.
Непрерывные случайные величины Лекция 15. План лекции Непрерывные случайные величины. Закон распределения. Функции распределения и плотности распределения.
Числовые характеристики (параметры) распределений случайных величин.
Выполнили: студенты гр. 2В00 О.В. Казанцева, А.Н. Колчегошева Томск – 2011 Реферат по теме: «Центральная предельная теорема А.М. Ляпунова»
Величина называется случайной, если она принимает различные результаты при проведении опыта, причем вероятность каждого исхода различна. Случайная величина.
Теория вероятностей и математическая статистика Занятие 4. Дискретные и непрерывные случайные величины. Функция распределения. Плотность распределения.
НОРМАЛЬНЫЙ ЗАКОН РАСПРЕДЕЛЕНИЯ. ЗАКОН БОЛЬШИХ ЧИСЕЛ.
23 сентября 2012 г.23 сентября 2012 г.23 сентября 2012 г.23 сентября 2012 г. Лекция 9. Непрерывные распределения 9-1. Функция распределения 9-2. Плотность.
Математика случайного Предельные теоремы и теории вероятностей теории вероятностей.
Случайные величины. Схема Бернулли Рассмотрим последовательность n независимых однородных испытаний (экспериментов). –Испытания считаем независимыми,
Случайные погрешности Случайные погрешности неопределенны по своему значению и знаку и поэтому не могут быть исключены из результатов измерений, как систематические.
ТТЕОРИЯ ВЕРОЯТНОСТЕЙ. Основные понятия Событием называется всякий факт, который может произойти или не произойти в результате опыта. События называются.
Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 15. Тема: Случайные величины и их числовые характеристики.
Числовые ряды Основные понятия Основные теоремы о сходящихся рядах Необходимый признак сходимости ряда Достаточные признаки сходимости рядов с положительными.
Оценка случайных погрешностей прямых многократных измерений. (Математическая часть).
Математическая статистика Случайные величины. Случайной называется величина, которая в результате испытания может принять то или иное возможное значение,
Литература Случайные величины и их законы распределения.
Литература Случайные величины и их законы распределения.
Примеры Вырожденное распределение (Распределение константы) Распределение Бернулли (Распределение индикатора события)
Транксрипт:

Список литературы 1. Гнеденко б.В. Курс теории вероятностей. – М.: Физматгиз, Ивченко Г.И., Медведев Ю.И. Математическая статистика. 2-е изд. М., Бородин А.Н. Элементарный курс теории вероятностей и математической статистики. 3-е изд., – Спб.: Издательство «лань», 2004 – 256 с. 4. Бочаров П.П., Печенкин А.В. Теория вероятностей. Математическая статистика. – М.: Гардарика, – 328 с.

2 5. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, – 405 с. 6. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике: учебное пособие для студентов вузов/ М.: Высшая школа, – 405 с. Список литературы

Лекция 1 Предельные теоремы теории вероятностей: Закон больших чисел и Центральная предельная теорема

4 Неравенство Чебышева

5

6 Сходимость по вероятности Последовательность случайных величин Сходится по вероятности к величине a если для любых > 0 и > 0 существует такое n(, ), начиная с которого выполняется неравенство: или

7 Сходимость по вероятности

8 Графическая иллюстрация сходимости по вероятности

9 Теорема Чебышева При неограниченном увеличении числа независимых испытаний среднее арифметическое наблюдаемых значений случайной величины, имеющей конечную дисперсию, сходится по вероятности к её математическому ожиданию.

10 Теорема Чебышева

11 Обобщенная теорема Чебышева При неограниченном увеличении числа независимых испытаний над случайными величинами, имеющими ограниченные дисперсии, среднее арифметическое наблюдаемых значений сходится по вероятности к среднему арифметическому математических ожиданий эти величин.

12 Обобщенная теорема Чебышева

13 Теорема Бернулли При неограниченном увеличении числа независимых опытов в постоянных условиях частота рассматриваемого события А сходится по вероятности к его вероятности p в отдельном испытании.

14 Индикатор События И Его Свойства Индикатор события – это случайная величина, принимающая значение, равное единице, если событие произошло и равное нулю – в противном случае.

15 Ряд распределения Индикатора События Математическое ожидание и дисперсия индикатора

16 Теорема Пуассона При неограниченном увеличении числа независимых испытаний в переменных условиях частота события сходится по вероятности к среднему арифметическому его вероятностей при данных испытаниях

Центральная Предельная Теорема Рассматривается вопрос о законе распределения суммы случайных величин, когда число слагаемых неограниченно возрастает

18 Теорема Ляпунова Если случайные величины взаимно независимы и имеют один и тот же закон распределения с математическим ожиданием m и дисперсией 2, причем существует ограниченный третий абсолютный момент 3 то при неограниченном увеличении n закон распределения суммы приближается к нормальному.

19 Пример 4 Складываются 24 независимых случайных величины, имеющих равномерное распределение на интервале (0, 1). Написать приближенное выражение для плотности распределения суммы этих случайных величин. Найти вероятность того, что сумма будет заключена в пределах от 6 до 8.