Лист Мёбиуса. Белоброва Анна и Саенко Татьяна, 7-а класс, гимназия 16
Немецкий астроном и математик Август Фердинанд Мёбиус ( ) взял однажды бумажную ленту, повернул один ее конец на пол-оборота (то есть на 180 градусов), а потом склеил его с другим концом. То ли от скуки он это сделал, то ли научного интереса ради - теперь уже неизвестно. Зато доподлинно известно, что именно так и появилась еще в прошлом веке знаменитая лента Мёбиуса. Говорят, что придумал свою ленту Август Фердинанд Мёбиус, когда наблюдал за горничной, которая надевала на шею шарф. А Также, впервые ввел систему координат и аналитические методы исследования, установил существование односторонних поверхностей (листов Мебиуса). Мебиус- один из основоположников теории геометрических преобразований, а также топологии, теории векторов и многомерной геометрии. Получил важные результаты в теории чисел (функция Мебиуса).
А тем, что поверхность ленты Мёбиуса имеет только одну сторону и при разрезании ленты получается одна окружность. Чем же знаменита лента Мёбиуса ?
Это легко проверить. Возьмите карандаш и начните закрашивать ленту в каком-нибудь направлении. Вскоре вы вернетесь в то место, откуда начали. А теперь посмотрите внимательно: закрашенной оказалась вся лента целиком! А ведь вы ее не переворачивали, чтобы закрасить с другой стороны, т.е. поверхность ленты Мёбиуса - односторонняя. Такое вот у нее любопытное свойство.
А ещё У неё есть удивительные превращения ленты, если разрезать ее вдоль. В одной руке у вас ножницы. В другой большое кольцо, склеенное из длинной бумажной ленты. Ножницы протыкают эту ленту и аккуратно разрезают ее вдоль - точно посередине. "Ну вот, - подумаете вы, - сейчас получатся два отдельных кольца. Еще последний "вжик" - и..." Но что это? Вместо двух колец получается одно! Причем оно больше и тоньше первоначального. "Такого не бывает", - скажете вы. Бывает. И даже еще не такое. Если только в руках у вас не обычное бумажное кольцо, а удивительная лента Мебиуса. Вот вам и другое свойство этой ленты.
А вот если разрезать ленту на расстоянии 1/3 ее ширины от края, то получаются два кольца - но! - одно большое и сцепленное с ним маленькое. Если же разрезать еще и маленькое кольцо вдоль посередине, то у вас окажется весьма "затейливое" переплетение двух колец - одинаковых по размеру, но разных по ширине. Чудеса?.. Попробуйте сами! Ну а что, интересно, получится, если перед склеиванием ленты перекрутить ее два раза (то есть на 360 градусов)? Такая поверхность будет уже двусторонней. И чтобы закрасить все кольцо целиком, вам придется непременно перевернуть ленту на другую сторону.
Итак, простая полоска бумаги, но перекрученная всего лишь раз и склеенная затем в кольцо, сразу же превращается в загадочную ленту Мёбиуса и приобретает удивительные свойства. Такие свойства поверхностей и пространств изучает специальный раздел математики - ТОПОЛОГИЯ. Наука эта настолько сложная, что ее в школе не проходят. Только в институтах (и то не во всех!). Но кто знает, вдруг вы станете со временем знаменитым топологом и совершите не одно замечательное открытие. И быть может, какую-нибудь замысловатую поверхность назовут вашим именем.
Но лента Мёбиуса не только упражнение для разума, она и вполне практически применяется. В виде ленты Мёбиуса делают полосу ленточного конвейера, что позволяет ему работать дольше, потому что вся поверхность ленты равномерно изнашивается. Еще применяются ленты Мёбиуса в системах записи на непрерывную плёнку (чтобы удвоить время записи), в матричных принтерах красящая лента также имела вид листа Мёбиуса для увеличения срока годности.