Слово « тригонометрия » впервые встречается в заглавии книги немецкого теолога и математика Питикуса. Что такое тригонометрия? Тригонометрия – математическая дисциплина, изучающая зависимость между сторонами и углами треугольника. Хотя название возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны уже две тысячи лет назад.
Зачатки тригонометрических познаний зародились в древности. На раннем этапе тригонометрия развивалась в тесной связи с астрономией и являлась ее вспомогательным разделом.
Понятие синуса Длительную историю имеет понятие синуса. Фактически различные отношения отрезков треугольника и окружности ( а по существу, и тригонометрические функции) встречаются уже в веке до н. э. в работах великих математиков Древней Греции – Евклида, Архимеда, Аполлония Пергского.
Слово косинус немного моложе. Косинус – это сокращение латинского выражения complementy sinus, т.е. «дополнительный синус» (или иначе «синус дополнительной дуги» ; вспомните cos α = sin ( 90 - α )).
Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (линия тангенсов – это касательная к единичной окружности). Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс, секанс и косеканс ) введен в X веке арабским математиком Абу-ль-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов.
Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты лишь в XIV веке немецким математиком, астрономом Региомонтаном (1467 г.). Он доказал теорему тангенсов. Региомонтан составил также подробные тригонометрические таблицы; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе.