Логика высказываний КОНСПЕКТ ЗАНЯТИЯ Основные понятия - Логика - это наука о законах и операциях правильного мышления. - Логика высказываний - определенная.

Презентация:



Advertisements
Похожие презентации
Алгебра логики. Мышление Логика – наука о формах и способах мышления. Основные формы мышления – понятие, высказывание, умозаключение.
Advertisements

Цель: Подготовиться к зачету и контрольной работе. Задачи: Повторить термины и определения, Обобщить и систематизировать теорию, Закрепить решение практических.
Элементы логики Составлено по учебнику Угринович «Информатика и информационные технологии.».
Введение в логику. Дж. Буль (1815 – 1864) – анг. математик отец алгебры логики Булева алгебра (алгебра логики) изучает свойства функций, у которых и аргументы,
Таблицы истинности Употребляемые в обычной речи логические связки в алгебре логики называются логическими операциями. Логические операции описываются.
Аксиомы логики. ИНВЕРСИЯ Обозначение: Ā, not A. Пример: А - Дождя не будет Ā - Неверно, что дождя не будет Таблица истинности Логическое отрицание 1)
Алгебра высказываний Тема урока. Алгебра высказываний (алгебра логики) - это математический аппарат, с помощью которого записывают, вычисляют и преобразовывают.
Алгебра логики это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических.
Логика – это наука формах и способах мышления. Это учение о способах рассуждений и доказательств. Понятие – это форма мышления, которая выделяет существенные.
Высказывания. 1. Понятие высказывания 2. Операции с высказываниями 3. Таблица истинности 4. Булевы функции План:
Составьте таблицы истинностиУпростите 1.Правило Де Моргана 2.Операция переменной с ее инверсией 3.Операция с константами.
ОСНОВЫ ЛОГИКИ Щеглетова Елена Петровна, учитель информатики школы 15.
ОСНОВЫ ЛОГИКИ. (С) Болгова Н.А ФОРМЫ МЫШЛЕНИЯ ЛОГИКА это наука о формах и законах человеческого мышления и, в частности, о законах доказательных.
1 Основы логики и логические основы компьютера 10 класс.
АЛГЕБРА ЛОГИКИ. ЧТО ТАКОЕ АЛГЕБРА ЛОГИКИ? Алгебра логикиАлгебра логики – раздел математики, изучающий высказывания, рассматриваемые со стороны их логических.
ЛОГИЧЕСКИЕ ОСНОВЫ КОМПЬЮТЕРА. ЛОГИКА ЛОГИКА – это наука о формах и способах мышления. Мышление осуществляется через: понятия; понятия; высказывания; высказывания;
ОСНОВЫ ЛОГИКИ ТЕОРИЯ
копирование
ГБПОУ «МСС УОР 2» Москомспорта Преподаватель информатики Володина М.В г.
AB AvB A&B Основы логики Джордж Буль ( ) основоположник математической логики AB.
Транксрипт:

Логика высказываний КОНСПЕКТ ЗАНЯТИЯ

Основные понятия - Логика - это наука о законах и операциях правильного мышления. - Логика высказываний - определенная совокупность формул. - Высказывание - всякое предложение, которое может быть истинным или ложным. Истинное высказывание обозначается - 1, ложное - 0

НАПРИМЕР: «6 - четное число» - это высказывание, т.к. оно истинное. «Рим - столица Франции» - это тоже высказывание т.к. оно ложное. Но не всякое предложение является высказыванием. Например...

предложения «ученик десятого класса» и не являются высказываниями. «информатика - интересный предмет» не являются высказываниями. Первое предложение ничего не утверждает об ученике. Второе использует слишком неопределенное понятие «интересный предмет». Вопросительные и восклицательные предложения также не являются высказываниями Вопросительные и восклицательные предложения также не являются высказываниями, поскольку говорить об их истинности или ложности не имеет смысла.

Предложения типа «в городе А более миллиона жителей», «у него голубые глаза» не являются высказываниями, так как для выяснения их истинности или ложности нужны дополнительные сведения, о каком конкретно городе или человеке идет речь. Такие предложения называются высказывательными формами. Высказывательная форма - это повествовательное предложение, которое прямо или косвенно содержит хотя бы одну переменную и становится высказыванием, когда все переменные замещаются своими значениями.

Задание 1: Приведите примеры: а) истинного и ложного высказываний; б) предложения, не являющегося высказыванием; с) высказывательной формы. (запишите в тетрадь)

Употребляемые в обычной речи слова и словосочетания «не», «и», «или», «если …, то», «тогда и только тогда» и другие позволяют из уже заданных высказываний строить сложные высказывания. Такие слова и словосочетания называются логическими связками. Иначе они называются...

Основные логические операции I.Инверсия. II.Конъюнкция. III.Дизъюнкция. IV.Строгая дизъюнкция. V.Импликация VI.Эквивалентность.

ИНВЕРСИЯ Обозначение: Ā, not A. Пример: А - Дождя не будет Ā - Неверно, что дождя не будет Таблица истинности Логическое отрицание 1) 1) НЕ 2) НЕВЕРНО, ЧТО

Задание 2: Приведите пример высказывания и его отрицания. Определите истинность каждого.

КОНЪЮНКЦИЯ Обозначения: &, and,,. Пример: А - Дождя не будет. В - Небо голубое. А&В - Дождя не будет и небо голубое. Таблица истинности: Логическое умножение И

Задание 3: а) Приведите примеры двух высказываний и получите составное высказывание используя логическую связку «И». б) Определите истинность или ложность каждого из трех высказываний

ДИЗЪЮНКЦИЯ Обозначения: OR, V, + Пример: А - Дождя не будет. В - Небо голубое. А V В - Дождя не будет или небо голубое. Таблица истинности: Логическое сложение ИЛИ

Задание 4: а) Приведите примеры двух высказываний и получите составное высказывание используя связку «ИЛИ». б) Определите истинность или ложность каждого из трех высказываний.

СТРОГАЯ ДИЗЪЮНКЦИЯ Обозначения: XOR Пример: А - Дождя не будет. В - Небо голубое. А xor В - Либо дождя не будет, либо небо голубое. Таблица истинности: ЛИБО, ЛИБО

Задание 5: а) Приведите примеры двух высказываний и получите составное высказывание используя связку «ЛИБО, ЛИБО». б) Определите истинность или ложность каждого из трех высказываний

ИМПЛИКАЦИЯ Обозначения: Пример: А - Дождя не будет. В - Небо голубое. А В - Если дождя не будет, то небо голубое. Таблица истинности: Условная связь ЕСЛИ, ТО

Задание 6: а) Приведите примеры двух высказываний и получите составное высказывание используя связку «ЕСЛИ, ТО...». б) Определите истинность или ложность каждого из трех высказываний

ЭКВИВАЛЕНТНОСТЬ Обозначения: Пример: А - Дождя не будет. В - Небо голубое. А В - Дождя не будет тогда и только тогда, когда небо голубое. Таблица истинности: 1) Если и только если 2) Тогда и только тогда, когда

Задание 7: а) Приведите примеры двух высказываний и получите составное высказывание используя связку. б) Определите истинность или ложность каждого из трех высказываний

Итог: 4 Вы познакомились с основными понятиями алгебры логики. 4 Рассмотрели элементарные логические операции. 4 Разобрали для каждой логической операции таблицу истинности. Домашнее задание: подобрать высказывания для каждой логической операции (1 -2 примера)