История тригонометрии Работа учителя ГОУ СОШ 1315 Мирсалимовой Е.Н.

Презентация:



Advertisements
Похожие презентации
Тригономе́трия (от греч. τρίγονο (треугольник) и греч. μετρειν (измерять), то есть измерение треугольников) раздел математики, в котором изучаются тригонометрические.
Advertisements

Учитель математики МБОУ СОШ 66 Шумакова Л.Г.. Тригономе́три я (от греч. τρίγωνον (треугольник) и греч. μέτρεο (меряю), то есть измерение треугольников)
Работу выполнил: Субботин Антон Ученик 10 класса МБОУ «Тирянская СОШ»
История возникновения и развития тригонометрии. Авторы проекта учащиеся 10 «А» кл МОУ «СОШ 75» : Вильдяева Екатерина, Кочеткова Анастасия, Худошина Анастасия.
Тригономе́трия (от греч. τρίγονο (треугольник) и греч. μετρειν (измерять), то есть измерение треугольников) раздел математики, в котором изучаются тригонометрические.
И СТОРИЯ ТРИГОНОМЕТРИИ Куляев Владимир 10 «Б». С ОДЕРЖАНИЕ Определения История Синус, косинус, тангенс Дальнейшее развитие Аналитическая теория Список.
Что означает название предмета «Алгебра и начала анализа?» Алгебра – один из разделов математики, изучающий свойства величин, выраженных буквами, независимо.
Историческая справка Тригонометрия. Тригонометрия (от греч. τρίγονο (треугольник) и греч. μετρειν (измерять), то есть измерение треугольников) раздел.
Что означает название предмета «Алгебра и начала анализа?» Алгебра – один из разделов математики, изучающий свойства величин, выраженных буквами, независимо.
Тригонометрические функции. Историческая справка. Подготовил: Ученик 10 класса Резников Алексей.
Слово « тригонометрия » впервые встречается в заглавии книги немецкого теолога и математика Питикуса. Что такое тригонометрия? Тригонометрия – математическая.
Тригонометрия 8 класс
Тригонометрические функции, их свойства, графики и применение Подготовила: Ученица 10«А»класса Биалиева Светлана Руководитель:Кретова Д.Н.
Выполнила: ученица 11 класса МБОУ «Среднекибечская СОШ» Канашского района ЧР Данилова Ольга Руководитель: учитель математики Тимофеева Г.Ф.
Выполнила Силкина Рита ученица 11 Б класса МОУ Алексеевской СОШ под руководством Плешаковой О.В г.
Г. Сыктывкар 2011 год Учитель математики Яна Валерьевна Елфимова X Y - X Y
Выполнила : Семина Елена, обучающаяся 9 А класса МБОУ СОШ 6 г. о. Железнодорожный Руководитель проекта : Злобина Елена Григорьевна, учитель математики.
Тригонометрические функции. Тригонометрические функции острого угла есть отношения различных пар сторон прямоугольного треугольника 1) Синус - отношение.
МОУ СОШ п. Козлово Конаковского района Тверской области Учебный проект: Авторы: учащиеся 10 класса Учитель: Баранова С.И
ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ. Учитель Жданова О. А. МКОУ СОШ 1 г.Лиски 10 класс.
Транксрипт:

История тригонометрии Работа учителя ГОУ СОШ 1315 Мирсалимовой Е.Н

Происхождение названия Слово «тригонометрия» впервые встречается в 1505г в заглавии книги немецкого теолога и математика Питискуса. Происходит от греческих слов «треугольник» и «мера»,и это наука об измерении треугольников. Хотя название возникло относительно недавно, многие ее понятия и факты были известны уже две тысячи лет назад.

Древняя Греция Древнегреческие математики в своих построениях, связанных с измерением дуг круга, использовали технику хорд. Перпендикуляр к хорде, опущенный из центра окружности, делит пополам дугу и опирающуюся на неё хорду. Половина поделенной пополам хорды это синус половинного угла, и поэтому функция синус известна также как «половина хорды». Благодаря этой зависимости, значительное число тригонометрических тождеств и теорем, известных сегодня, были также известны древнегреческим математикам, но в эквивалентной хордовой форме.

Средневековая Индия Другие источники сообщают, что именно замена хорд синусами стала главным достижением Средневековой Индии. Такая замена позволила вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом, в Индии было положено начало тригонометрии как учению о тригонометрических величинах. Индийские учёные пользовались различными тригонометрическими соотношениями, в том числе и теми, которые в современной форме выражаются как учению о тригонометрических величинах.

Как тригонометрия дошла до наших дней. В 8 в. Учёные стран Ближнего и Среднего Востока познакомились с трудами индийских математиков и астрономов и перевели их на арабский язык. В середине 9 века среднеазиатский учёный Аль- Хорезми написал сочинение «Об индийском счёте». После того как арабские трактаты были переведены на латынь, многие идеи индийских математиков стали достоянием европейской, а затем и мировой науки.

Интересные факты Различные отношения отрезков треугольника и окружности, а также тригонометрические функции встречаются уже в третьем веке до н. э. в трудах Евклида, Архимеда и Апполония Пергского. Современный синус угла а изучался как полухорда, на которую опирается центральный угол величиной а, или как хорда удвоенной дуги.

Основные тригонометрические функции Синус отношение противолежащего катета к гипотенузе. Косинус отношение прилежащего катета к гипотенузе. Тангенс отношение противолежащего катета к прилежащему. Котангенс отношение прилежащего катета к противолежащему. Секанс отношение гипотенузы к прилежащему катету. Косеканс отношение гипотенузы к противолежащему катету.

Немного о косинусе Слово косинус намного моложе. Косинус – это сокращение латинского выражения complementy sinus, т. е. «дополнительный синус» (или иначе «синус дополнительной дуги» cos a = sin( 90` - a) Известный математик Ф. Клейн предлагал учение о «тригонометрических» функциях назвать гониометрией от слова «угол», однако это название не привилось

Современная тригонометрия Современный вид тригонометрии придал крупнейший математик восемнадцатого столетия Л. Эйлер. Он ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения. Различные факты стали доказываться путем применения формул, доказательства стали компактнее и проще.

Где тригонометрия нашла применение? Тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела. Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контролировать системы навигации спутников.

Применение тригонометрии Также следует отметить применение тригонометрии в таких областях, как теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика, химия, теория чисел (и, как следствие, криптография), сейсмология, метеорология, океанология, картография, многие разделы физики, топография и геодезия, архитектура, фонетика, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография.