ОСНОВЫ ГИДРАВЛИКИ
Гидравлика –наука изучающая законы равновесия и движения жидкости и разрабатывающая методы их применения для решения практических задач. Разделяется на гидростатику и гидродинамику Гидростатика раздел механики жидкостей, в котором изучаются состояние равновесия жидкости, находящейся в относительном или абсолютном покое, действующие при этом силы, а также закономерности плавания тел без их перемещения.
Основные физические свойства жидкостей В отличие от твердого тела жидкость характеризуется малым сцеплением между частицами, вследствие чего она обладает текучестью и принимает форму сосуда, в который ее помещают.
Жидкости подразделяют на два вида: капельные и газообразные. Капельные жидкости обладают большим сопротивлением сжатию (практически несжимаемы) и малым сопротивлением касательным и растягивающим усилиям (из-за незначительного сцепления частиц и малых сил трения между частицами). Газообразные жидкости характеризуются почти полным отсутствием сопротивления сжатию. К капельным жидкостям относятся вода, бензин, керосин, нефть, ртуть и другие, а к газообразным все газы.
При абсолютном покое жидкость неподвижна относительно земли и резервуара. При относительном покое отдельные частицы жидкости, оставаясь в покое относительно друг друга, перемещаются вместе с сосудом, в котором они находятся. Наиболее важной областью применения законов и методов расчета технической гидравлики являются гидротехника и мелиорация, водоснабжение и канализация, гидроэнергетика и водный транспорт. Без гидравлики практически невозможно было бы проектирование и строительство гидротехнических сооружений.
Изучение реальных жидкостей и газов связано со значительными трудностями, т.к. физические свойства реальных жидкостей зависят от их состава, от различных компонентов, которые могут образовывать с жидкостью различные смеси как гомогенные (растворы) так и гетерогенные (эмульсии, суспензии и др.) По этой причине для вывода основных уравнений движения жидкости приходится пользоваться некоторыми абстрактными моделями жидкостей и газов, которые наделяются свойствами неприсущими природным жидкостям и газам. Идеальная жидкость - модель природной жидкости, характеризующаяся изотропностью всех физических свойств и, кроме того, характеризуется абсолютной несжимаемостью, абсолютной текучестью (отсутствие сил внутреннего трения), отсутствием процессов теплопроводности и теплопереноса. Реальная жидкость - модель природной жидкости, характеризующаяся изотропностью всех физических свойств, но в отличие от идеальной модели, обладает внутренним трением при движении.
Гидростатика раздел гидравлики, изучающий законы равновесия в покоящейся жидкости. Гидростатика рассматривает жидкость и погруженные в нее тела в состоянии покоя. Жидкость, находящаяся в покое, подвергается действию внешних сил двух категорий: массовых (объемных) и поверхностных. К массовым относятся силы, пропорциональные массе жидкости (сила тяжести, сила инерции), к поверхностным силы, распределенные по поверхности, т. е. давление. Под действием внешних сил в каждой точке жидкости возникают внутренние силы, характеризующие ее напряженное состояние
Плотность- масса единицы объема жидкости [p] = [кг/м 3 ] Удельный вес-вес единицы объема жидкости [γ] = [H/м 3 ]
Масса и вес связаны между собой соотношением g- ускорение свободного падения, м/сек 2
Уравнение состояния идеальных газов [p]=н/м 2 R= Дж (кмоль град) m = кмоль М = кг/кмоль Удельным объемом называют объем, занимаемый единицей масса газа.
Коэффициент объемного сжатия Коэффициент объемного сжатия (Па -1 ) – это относительное изменение объема жидкости при изменении давления на единицу: Величина, обратная коэффициенту объемного сжатия, называется модулем упругости жидкостей E ж (Па)
Коэффициент температурного расширения Коэффициент температурного расширения t ( 0 С) -1, выражает относительное изменение объема жидкости при изменении температуры на один градус:
Вязкость - коэффициент пропорциональности, характерный для данной жидкости. Свойство жидкости оказывать сопротивление усилиям, вызывающим относительное перемещение ее частиц, называется вязкостью.
Вя́зкость (вну́треннее тре́ние) одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В результате происходит рассеяние в виде тепла работы, затрачиваемой на это перемещение.жидкостейгазов
Отношение величины \Т\ к поверхности соприкосновения слоев обозначают через т и называют напряжением внутреннего трения, а также напряжением сдвига, или касательным напряжением.
Уравнения, выражает закон внутреннего трения Ньютона, согласно которому напряжение внутреннего трения, возникающее между слоями жидкости при ее течении, прямо пропорционально градиенту скорости. 1 н. сек/м 2 = 10пз= 1000спз 1 кгс сек/м 2 = 98,1 пз = 9810 cпз
Иногда вязкость жидкостей характеризуют кинематическим коэффициентом вязкости, или кинематической вязкостью. Единицей кинематической вязкости равна 1 м 2 /сек = 10* ст.
Основное уравнение гидростатики для несжимаемой однородной жидкости плотность постоянная, и
- это нивелирная высота, м - это статический или пьезометрический напор, м Формулировка закона: для каждой точки покоящейся жидкости сумма нивелирной высоты и пьезо метрического напора есть величина постоянная.
уравнение является выражением закона Паскаля: давление, создаваемое в любой точке покоящейся несжимаемой жидкости,, передается одинаково всем точкам ее объема.
Практические приложения основного уравнения гидростатики Р= Р атм + Р атм + = Р атм + в открытых или закрытых находящихся под одинаковым давлением сообщающихся сосудах, заполненных однородной жидкостью, уровни ее располагаются на одной высоте независимо от формы а поперечного сечения сосудов.
Отсюда следует, что в сообщающихся сосудах высоты уровней разнородных жидкостей над поверхностью их раздела обратно пропорциональны плотностям этих жидкостей.
Гидростатические машины. Р 1 = P2=P2= Давление жидкости на дно и стенки сосуда.
сила давления Р на горизонтальное дно сосуда не зависит от формы сосуда и объема жидкости в нем. При данной плотности жидкости эта сила определяется лишь высотой столба жидкости Н и площадью F дна сосуда: где h расстояние от верхнего уровня жидкости до центра тяжести смоченной площади F стенки. Поэтому сила давления на вертикальную стенку равна произведению ее смоченной площади на гидростатическое давление в центре тяжести смоченной площади стенки.