Институт Лазерной Физики Отдел Лазерной Плазмы Новосибирск, СО РАН Лабораторное моделирование продольных токов в экспериментах по обтеканию диполя лазерной.

Презентация:



Advertisements
Похожие презентации
Институт Лазерной Физики Отдел Лазерной Плазмы Новосибирск, СО РАН Исследование трансполярного потенциала и продольных токов в лабораторных экспериментах.
Advertisements

Зависимость параметров плазмы и магнитного поля вблизи подсолнечной точки магнитосферы от параметров солнечного ветра и межпланетного магнитного поля по.
Исследование баланса давления на магнитопаузе в подсолнечной точке по данным спутников THEMIS С. С. Россоленко 1,2, Е. Е. Антонова 1,2, И. П. Кирпичев.
ПРОЕКТ «РЕЗОНАНС» - ИССЛЕДОВАНИЕ ВЗАИМОДЕЙСТВИЯ ВОЛН И ЧАСТИЦ ВО ВНУТРЕННЕЙ МАГНИТОСФЕРЕ ЗЕМЛИ Институт космических исследований РАН, СОЛНЕЧНО-ЗЕМНАЯ ФИЗИКА.
ИКИ, ТОПОЛОГИЯ ВЫСОКОШИРОТНОЙ МАГНИТОСФЕРЫ И ФОРМИРОВАНИЕ ЛОКАЛЬНЫХ ЛОВУШЕК ДЛЯ ЭНЕРГИЧНЫХ ЧАСТИЦ Е.Е.Антонова 1,2, И.М.Мягкова1, М.О. Рязанцева.
Структура поперечных токов в высокоширотной магнитосфере И.П. Кирпичев 1, Е.Е.Антонова 2,1, К.Г. Орлова 2 1 ИКИ РАН 2 НИИЯФ МГУ ИКИ РАН,
МОДЕЛИРОВАНИЕ ВОЗМУЩЕНИЙ МАГНИТНОГО ПОЛЯ ПРИ КОНВЕКЦИИ ПЛАЗМЫ В МАГНИТОСФЕРЕ ЗЕМЛИ В.В. Вовченко 1, Е.Е. Антонова 2,1 1 ИКИ РАН, Москва 2 НИИЯФ МГУ, Москва.
ИКИ, февраль 2015 Магнитный поток хвоста магнитосферы в эмпирической и МГД-моделях М. Шухтина, Н. Морачевский, Н. Цыганенко, Е. Гордеев Санкт-Петербургский.
Институт Лазерной Физики Отдел Лазерной Плазмы Новосибирск, СО РАН Мини-магнитосфера Антонов В.М., Бояринцев Э.Л., Мелехов В.М., Посух В.Г., Захаров Ю.П.,
Развитие асимметричного кольцевого тока во время магнитной бури В. В. Калегаев, К.Ю. Бахмина, И.И. Алексеев, Е.С. Беленькая НИИЯФ МГУ Я.И. Фельдштейн ИЗМИРАН.
Моделирование динамики температуры протонов в плазмосфере на начальной стадии магнитной бури; сравнение с экспериментальными данными. Г.А. Котова, М.И.
Титан как источник ультрафиолетового и километрового излучений В.В. Зайцев, В. Е. Шапошников Институт прикладной физики РАН, Нижний Новгород.
ХАРАКТЕРИСТИКИ КРУПНОМАСШТАБНОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ И СКОРОСТИ КОНВЕКЦИИ ВБЛИЗИ ГРАНИЦЫ ПОЛЯРНОЙ ШАПКИ Р. Лукьянова 1, 2 А. Козловский 3 1 Арктический.
РАСПРЕДЕЛЕНИЕ ПЛАЗМЕННОГО ДАВЛЕНИЯ В ЭКВАТОРИАЛЬНОЙ ПЛОСКОСТИ ЗЕМЛИ ПРИ РАЗЛИЧНЫХ УСЛОВИЯХ В СОЛНЕЧНОМ ВЕТРЕ. СТАТИСТИКА THEMIS И.П. Кирпичев 1,2, Е.Е.Антонова.
Квазипериодические появления плотной плазмы в высокоширотном пограничном слое при северном направлении межпланетного магнитного поля. Г. В. Койнаш, О.Л.
Одновременные наблюдения на ИСЗ Интербол-1 прихода токового слоя в солнечном ветре к околоземной ударной волне, образования аномалии горячего течения и.
Исследование структуры токов на установке ГОЛ-3 Э.Р. Зубаиров науч. рук. В.В. Поступаев Новосибирск 2005.
Исследование магнитосферного поля коротации по измерениям электрического поля атмосферы в высоких широтах Ю. В. Д у м и н Теоретический отдел, Институт.
Квазипериодические всплески плотной плазмы в высокоширотном пограничном слое при северном направлении межпланетного магнитного поля. Г. В. Койнаш, О.Л.
Цикл солнечной активности в потоках солнечного ветра Н.А.Лотова, К.В.Владимирский, В.Н.Обридко ИЗМИРАН.
Транксрипт:

Институт Лазерной Физики Отдел Лазерной Плазмы Новосибирск, СО РАН Лабораторное моделирование продольных токов в экспериментах по обтеканию диполя лазерной плазмой Программа моделирования солнечно-земных процессов с помощью облаков лазерной плазмы и дипольного магнитного поля Пономаренко А.Г., Антонов В.М., Бояринцев Э.Л., Захаров Ю.П., Посух В.Г., Мелехов В.М., Вшивков К.А. Шайхисламов И.Ф.

Magnetic moment μ=210 7 Gauss*cm 3 Laser pulses 400 J in 50 ns Plasma parameters: [M i ]=5.6; [Z i ]=2.5, velocity 150 km/s, total energy 40 J в in ~1 radian, total number of ions , plasma flow duration ~2 µs Схема установки target magnetic dipole

– laser beams; 2 – target; 4 – magnetic dipole; 5 – probes. Also schematically are shown laser-produced plasma (3) and field aligned currents (6, large arrows). Thin lines mark magnetic field lines and plasma streamlines.

Статические и мгновенные фотографии взаимодействия потока плазмы с магнитным диполем в экваториальной и меридиональной плоскостях. Можно видеть плазменную мишень, пятна свечения на полюсах диполя, магнитопаузу и каспы.

Процессы в полярных областях и продольные токи (FAC) Мгновенные и статические снимки полярных областей диполя. Выделяется пара пятен свечения на утренней и вечерней сторонах. Пятна имеют сложную морфологию и динамику, увеличиваясь и смещаясь в ходе взаимодействия как по широте, так и по долготе. I

Основная токовая система, наблюдаемая в эксперименте - Токи Чепмена-Ферраро - Магнитопауза и каспы - Структура переходного слоя Продольные токи (FAC) Токи зоны 1 на дневной стороне, протекающие в направлении утро-вечер. На утренней стороне переносятся электронами, ускоренными вверх из ионосферы перепадом потенциала. В эксперименте в областях втекания и вытекания в ионосферу порождают пятна характерного свечения. Наблюдаются всегда, если поверхность диполя проводящая. В лаборатории также наблюдались на установке UCR-T1 (IGPP, Un. Of Cal.) На КИ-1 впервые проведены комплексные измерения полного продольного тока, его локальные характеристики, магнитные поля и связь с динамикой плазменного потока

Зависимости от величины момента диполя Обнаружен скейлинг Чепмена Ферраро ~μ 1/3 для положения магнитопаузы и интегральной величины FAC. Сравнение результатов с проводящей и диэлектрической поверхностью диполя - Моделирует наличие или отсутствие ионосферы. - Позволяет выявить вклад FAC в магнитосферное поле.

Локальные измерения продольного тока Измерение локального тока подтверждает: 1) Продольный ток в эксперименте имеет такое же направление как токи зоны-1 на Земле. 2) Ток сильно неоднороден по сечению и протекает по отдельным интенсивным каналам.

Измерения с проводящим и непроводящим диполем Позволили выявить характерные детали магнитных возмущений, создаваемых продольными токами и обнаружить их связь с электрическим потенциалом, наводимым в экваториальной части магнитопаузы.

Продольные токи в магнитосфере Меркурия RmRmRmRmμP (P μ) 1/3 J Ch-F J FAC ΔB polar B FAC Earth 10 R E ~310 6 (1-5) Mercury 1.5 R M ~ ~10 6 ?50 Lab (1-3) R d ~810 3 ~310 3 (2-4) Предположительно, продольные токи на Меркурии могут заметно увеличить магнитное поле на полюсах и ослабить его на экваторе, что повлияет на интерпретацию спутниковых измерений дипольного момента. Характерное магнитное возмущение от продольных токов было зарегистрировано при пролете Mariner 10-I в хвосте Меркурия [Slavin 1997 ]. Наземные наблюдения экзосферы Меркурия обнаружили существование на высоких широтах пятен спорадического поверхностного свечения [Potter 1985, Sprague 1990]. Все это указывает на возможность крупно-масштабной системы FAC, но механизм замыкания токов на поверхности Меркурия остается загадочным [Baumjohanna 2006]. Магнитное возмущение от FAC в полярных областях имеет скейлинг