Геометрическая прогрессия Учитель математики Лицея искусств «Санкт-Петербург» Евсеева А.М. Ученик 9 класса Круглов Михаил.

Презентация:



Advertisements
Похожие презентации
Геометрическая прогрессия. Закончился двадцатый век. Куда стремится человек? Изучен космос и моря, Строенье звёзд и вся земля. Но математиков зовёт Известный.
Advertisements

«Определение геометрической прогрессии. Формула n-го члена геометрической прогрессии».
ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ Антонова Евгения, Атрошкина Татьяна B C3C3 C2C2 C1C1 CA A1A1 A2A2 A3A3 Числа не управляют миром, но показывают, как управляется.
Арифметическая и геометрическая прогрессии. Задача с историей: В древней Индии шах Шерам посулил любую награду за интересную игру, к которой он долгой.
числовая последовательность, если для всех натуральных n выполняется равенство b n+1 =b n *q где q - некоторое число.
СВОЯ ИГРА Многоугольники. Прогрессии. Лишний термин Основные понятия Задачи по алгебре Задачи по геометрии.
Древнеиндийский царь Шерам пожелал наградить изобретателя шахмат древнеиндийского ученого Сету.
Презентацию составил Левенсон Семен – учащийся 9 класса Пойковской школы 1 учитель –Новокрещенова В.С.
К л а с с н а я р а б о т а. Геометрическая прогрессия К л а с с н а я р а б о т а. Геометрическая прогрессия.
Общеобразовательное учреждение средняя общеобразовательная школа 23 г. Сызрани Самарской области Учитель: Башканова Учитель: Башканова Нина Нина Владимировна.
Геометрическая прогрессия Числовая последовательность, первый член которой отличен от нуля, а каждый член, начиная со второго равен предыдущему члену,
Презентацию выполнили Ученицы 9 «А» класса Средней школы 1980 Разук Юлия и Давидян Берта.
Геометрической прогрессия-это последовательность чисел, каждый член которой, начиная со второго отличается от предыдущего в одно и тоже число раз (первый.
Закончился XX век. Куда стремится человек? Изучен космос и моря, Строенье звёзд и вся Земля. Но математиков зовёт Известный лозунг: Прогрессио – движение.
г. К л а с с н а я р а б о т а. Геометрическая прогрессия г. К л а с с н а я р а б о т а. Геометрическая прогрессия.
(Алгебра – 9). Шахматы – одна из самых древних игр. Она существует уже многие века и неудивительно, что с нею связаны различные придания, правдивость.
Начать МБОУ лицей 5 Хрупина Е.С. учитель математики. Презентация по теме:Геометрическая прогрессия.Сумма первых n членов геометрической прогрессии.
Методическая разработка урока по алгебре в 9 классе Методическая разработка урока по алгебре в 9 классе «Сумма n первых членов геометрической прогрессии»
П а р а б о л а Т е о р е м а К о о р д и н а т а А л г е б р а П р я м а я И н т е р в а л А к с и о м а А с с и м п т о т а О р д и н а т а В и е т.
Геометрическая прогрессия А-9 урок1. Цель: Познакомить учащихся с определением геометрической прогрессии, формулой n-го члена геометрической прогрессии,
Транксрипт:

Геометрическая прогрессия Учитель математики Лицея искусств «Санкт-Петербург» Евсеева А.М. Ученик 9 класса Круглов Михаил

Геометрической прогрессией называется числовая последовательность, если для всех натуральных n выполняется равенство где q - некоторое число.

q – знаменатель геометрической прогрессии

По определению геометрической прогрессии: Формула n-го члена

Если все члены прогрессии положительны, каждый член геометрической прогрессии, начиная со второго, равен среднему геометрическому двух соседних с ним членов. Свойство геометрической прогрессии:

Геометрическая прогрессия называется бесконечно убывающей, если модуль ее знаменателя меньше единицы. |q| < 1

Формула суммы n первых членов геометрической прогрессии Формула суммы бесконечно убывающей геометрической прогрессии

Некоторые свойства геометрической прогрессии были известны издревле. Когда создатель шахмат (по одним данным древнеиндийский математик, по другим легендарный дравид велалар по имени Сесса или Сисса) показал своё изобретение правителю страны, тому так понравилась игра, что он позволил изобретателю право самому выбрать награду. Мудрец попросил у короля за первую клетку шахматной доски заплатить ему одно зерно пшеницы (по другой версии риса), за второе два, за третье четыре и т. д., удваивая количество зёрен на каждой следующей клетке.

Правитель, не разбиравшийся в математике, быстро согласился, даже несколько обидевшись на столь невысокую оценку изобретения, и приказал казначею подсчитать и выдать изобретателю нужное количество зерна. Однако, когда неделю спустя казначей всё ещё не смог подсчитать, сколько нужно зёрен, правитель спросил, в чём причина такой задержки. Казначей показал ему расчёты и сказал, что расплатиться невозможно. Правитель, чтобы взять реванш над пытавшимся его обхитрить изобретателем, велел последнему пересчитать каждое зёрнышко, чтобы не было сомнений в том, что он честно с ним расплатился.

Для того чтобы подсчитать величину награды, надо сложить зерна, лежащие на всех клеточках доски. В результате, ему должны были выплатить зерен

Количество зерна примерно в 1800 раз превышает мировой объем урожая пшеницы за год (в аграрном году урожай составил 686 млн. тонн.) - то есть превышает весь объем урожая пшеницы, собранный за всю историю человечества. Количество зёрен составляет примерно 0,0031 % количества атомов в 12 граммах углерода-12 (число Авогадро). В единицах массы: если принять, что одно зёрнышко пшеницы имеет массу 0,065 грамма (Troy grain [тройское зерно]: 1 gr = 0, g), тогда общая масса пшеницы на шахматной доске составит 1,200 триллионов тонн: Если массу пшеницы перевести в объем (1 куб.м. пшеницы весит около 760 кг.), то получится приблизительно 1500 куб.км., что эквивалентно амбару с размерами 10х10х15 км.

Есть другое изложение задачи, происходящее из Римской империи. Когда храбрый полководец вернулся в Рим из сражений, Цезарь спросил, какую плату он хочет за свою службу. Полководец запросил заоблачную сумму. Цезарь, чтобы не прослыть скрягой или человеком, не держащим слово, предложил полководцу пойти на следующий день в казну и взять одну золотую монету весом в один грамм, через день два грамма и т. д., пока тот сможет сам уносить полученные монеты (каждый день отливаются монеты нужного веса). Полководец, решив что ему удастся легко разбогатеть, согласился. Однако на 18-й день он уже не смог унести монету и в результате получил только малую часть того вознаграждения, что просил у Цезаря. Я. И. Перельман в своей книге «Занимательные задачи и опыты» приводит вариант с медными монетами, первая из которых весит пять граммов. Полководцу удаётся взять 17 монет, но последние две он вынужден катить по земле. На 18 день монета весило 262 килограмма!