Евклид Работа учителя ГОУСОШ 1315 г Москвы Мирсалимовой Е.Н.

Презентация:



Advertisements
Похожие презентации
7 класс Аксиома параллельности прямых. Повторение « Признаки параллельности двух прямых » Задание 1.
Advertisements

Евклид и его «Начала»
Евклид ( Ευκλείδης ) Евклид или Эвклид, (др.- греч. Ευκλείδης, ок. 300 г. до н. э.) древнегреческий математик.
Презентация по истории геометрии МОУ «Рождественская СОШ» Выполнил учащийся 7 класса учитель – Мотеюнене С.В год.
Имена Великих математиков на страницах учебника математики.
Быкова Ксения 7 а класс 2011 год. Евклидова геометрия.
Выполнила ученица 8 «в» класса Кирбитова Полина Реферат на тему: Руководитель: Полозова О. Г. :
Евклид - древнегреческий математик. Юный математик Жил в начале III века до нашей эры Сын Наукрата, известный под именем «Геометра», ученый старого времени,
Евклид. Евклид.. Евклид (ок до н. э.) древнегреческий математик. Работал в Александрии в 3 в. до н. э. Главный труд «Начала» (15 книг), содержащий.
Актуальность. Проблема: в настоящее время мы изучаем геометрию, не зная ее автора. Мне бы хотелось, чтобы мои одноклассники при имени Евклид, знали о.
Выполнили ученицы 10 класса «А» Дунаева Л. и Слобченко А.
«Начала» Евклида Автор работы: Васильева Ксения 10а.
Содержание: Цель работы Цель работы Пифагор Самосский (ок до н.э.) Пифагор Самосский (ок до н.э.) Евклид (ок до н.э.) Евклид.
7 класс ГЕОМЕТРИЯ. Геометрия (от греч. Земля и «меряю») раздел математики, изучающий пространственные структуры, отношения и их обобщения. Геометрия (от.
Евклид ( иначе Эвклид ) – древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике. Биографические сведения об.
Г. Эвклида учит решать задачи при помощи циркуля и линейки, другими словами - при помощи следующих геометрических операций: соединения двух указанных.
Эвклид биография БИОГРАФИЯ Евклид (ок до н. э.) древнегреческий математик. Работал в Александрии в 3 в. до н. э. Главный труд «Начала» (15 книг),
Аксиома параллельных прямых Об аксиомах геометрии Аксиома параллельных прямых О теоремах Свойства параллельных прямых Евклид Об авторе.
Евклид или Эвклид древнегреческий мате- матик. Мировую известность приобрёл благодаря сочинению по основам математики «Начала». Биографические данные.
Выполнила ученица 7 «А» класса Коваленко Таня Учитель: Гузеева Людмила Ивановна.
Транксрипт:

Евклид Работа учителя ГОУСОШ 1315 г Москвы Мирсалимовой Е.Н.

Евклид. Евкли́д или Эвкли́д (др.- греч. Ε κλείδης, ок. 300 г. до н. э.) древнегреческий математик. Родился в Александрии, учился в Афинах. Мировую известность приобрёл благодаря сочинению по основам математики «Начала» (Στοιχε α букв. элементы).

Биография Евклида Биографические данные о Евклиде крайне скудны. К наиболее достоверным сведениям о жизни Евклида принято относить то немногое, что приводится в Комментариях Прокла к первой книге Начал Евклида. Отметив, что «писавшие по истории математики» не довели изложение развития этой науки до времени Евклида, Прокл указывает, что Евклид был старше Платоновского кружка, но моложе Архимеда и Эратосфена и «жил во времена Птолемея I Сотера», «потому что и Архимед, живший при Птолемее Первом, упоминает об Евклиде и, в частности, рассказывает, что Птолемей спросил его, есть ли более короткий путь изучения геометрии, нежели Начала; а тот ответил, что нет царского пути к геометрии» Дополнительные штрихи к портрету Евклида можно почерпнуть у Паппа и Стобея. Папп сообщает, что Евклид был мягок и любезен со всеми, кто мог хотя в малейшей степени способствовать развитию математических наук, а Стобей передаёт ещё один анекдот о Евклиде. Приступив к изучению геометрии и разобрав первую теорему, один юноша спросил у Евклида: «А какая мне будет выгода от этой науки?» Евклид подозвал раба и сказал: «Дай ему три обола, раз он хочет извлекать прибыль из учёбы».

Начала Основное сочинение Евклида называется Начала. Книги с таким же названием, в которых последовательно излагались все основные факты геометрии и теоретической арифметики, составлялись ранее Гиппократом Хиосским, Леонтом и Февдием. Однако Начала Евклида вытеснили все эти сочинения из обихода и в течение более чем двух тысячелетий оставались базовым учебником геометрии. Создавая свой учебник, Евклид включил в него многое из того, что было создано его предшественниками, обработав этот материал и сведя его воедино. Начала состоят из тринадцати книг. Первая и некоторые другие книги предваряются списком определений. Первой книге предпослан также список постулатов и аксиом. Как правило, постулаты задают базовые построения (напр., «требуется, чтобы через любые две точки можно было провести прямую»), а аксиомы общие правила вывода при оперировании с величинами (напр., «если две величины равны третьей, они равны между собой»).

Подробнее о творении Евклида В I книге изучаются свойства треугольников и параллелограммов; эту книгу венчает знаменитая теорема Пифагора для прямоугольных треугольников. Книга II, восходящая к пифагорейцам, посвящена так называемой «геометрической алгебре». В III и IV книгах излагается геометрия окружностей, а также вписанных и описанных многоугольников; при работе над этими книгами Евклид мог воспользоваться сочинениями Гиппократа Хиосского. В V книге вводится общая теория пропорций, построенная Евдоксом Книдским, а в VI книге она прилагается к теории подобных фигур. VIIIX книги посвящены теории чисел и восходят к пифагорейцам; автором VIII книги, возможно, был Архит Тарентский. В этих книгах рассматриваются теоремы о пропорциях и геометрических прогрессиях, вводится метод для нахождения наибольшего общего делителя двух чисел (известный ныне как алгоритм Евклида), строится чётные совершенные числа, доказывается бесконечность множества простых чисел. В X книге, представляющей собой самую объёмную и сложную часть Начал, строится классификация иррациональностей; возможно, что её автором является Теэтет Афинский. XI книга содержит основы стереометрии. В XII книге с помощью метода исчерпывания доказываются теоремы об отношениях площадей кругов, а также объёмов пирамид и конусов; автором этой книги по общему признанию является Евдокс Книдский. Наконец, XIII книга посвящена построению пяти правильных многогранников; считается, что часть построений была разработана Теэтетом Афинским.