{ задача Коши - геометрическая интерпретация дифференциального уравнения второго порядка - приемы интегрирования дифференциальных уравнений 2-го порядка - уравнение погони – примеры }
Теорема Дифференциальное уравнение второго порядка может иметь вид F(x,y,y,y) = 0 или y = f(x,y,y). Общим решением уравнения является функция y = (x, C 1, C 2 ), существенно зависящая от двух произвольных постоянных и обращающая данное уравнение в тождество при любых значениях этих постоянных. Частное решение получается при закреплении постоянных С 1, С 2. Задача отыскания решения дифференциального уравнения удовлетворяющего заданным начальным условиям y(x 0 ) = y 0, y(x 0 ) = y 0 называется задачей Коши. Если функция f - правая часть дифференциального уравнения d 2 y/dx 2 = f(x,y,dy/dx) непрерывна в некоторой замкнутой трехмерной области D: oxyy и имеет в этой области ограниченные частные производную д f/ д y, д f/ д y, то каждой внутренней точке области D соответствует, и притом единственное, решение, удовлетворяющее заданным начальным условиям.
Геометрически это означает, что через каждую точку M 0 (x 0,y 0, y 0 )области D проходит одна и только одна интегральная кривая рассматриваемого уравнения. Данная теорема называется теоремой существования и единственности решения дифференциального уравнения P 0 (x 0,y 0 ) D x y o Y M 0 (x 0,y 0, y 0 )
@ Решить дифференциальное уравнение второго порядка, при заданных начальных условиях Решение M( 1,1 ) x y o f y = 0 f y = 1/x C 2 = tg = 1
Пусть дано дифференциальное уравнение второго порядка F(x,y,y,y)=0.. Этим уравнением для каждой точки M(x,y) определяется связь между координатами точки, через которую проходит интегральная кривая, производной функции dy/dx - угловым коэффициент касательной к интегральной кривой, и, через вторую производную, кривизной кривой k. y = (x) y = d /dx
Метод понижения порядка Тип I Тип II
Метод понижения порядка Тип III Тип IV
@ Решить дифференциальное уравнение Решение
Если точка A движется вдоль заданной кривой, а точка P преследует её, причем вектор направления движения точки P всегда направлен на точку A, и скорости движения точек постоянны, то траектория точки P называется кривой погони. Такая задача впервые была решена французским математиком Pierre Bouguer в 1732 году, впоследствии задачи такого класса исследовались английским математиком Boole. Определить траекторию преследования цели ракетой, если цель движется вдоль прямой, а скорости цели и ракеты равны между собой. P A
Уравнение кривой погони выводится при условии, что вектор касательной к траектории в точке P всегда параллелен линии, соединяющей A и P Пусть точка A движется вдоль оси y, тогда уравнение её движения: Уравнение движения точки P в параметрической форме : P A
Последнее уравнение может быть переписано в следующем виде
Последнее уравнение допускает понижение порядка
Начальные условия: в момент времени t = 0 точка P находится в точке плоскости M 0 и имеет скорость V = 1 После подстановки этих величин в общее решение получаем частное решение P A
A B C D