Как решать В-14 без производной. Подготовка к ЕГЭ МБОУ СОШ 46,г. Хабаровск. Учитель математики – Кочерга Г.Н.

Презентация:



Advertisements
Похожие презентации
«Метод мажорант» Работа учащихся 11 «А» класса МОУ «Гимназия 5» Барышникова Александра, Барышниковой Виктории Научный руководитель: учитель математики.
Advertisements

ОБЛАСТЬ ОПРЕДЕЛЕНИЯ ФУНКЦИЙ Определение: Значения, которые принимает Х в функции f(x), называется областью определения функции и обозначается D(f). f(x),
Открытый банк заданий по математике. СЛОЖНАЯ ФУНКЦИЯ – функция, представленная как композиция нескольких функций. Сложная функция – функция от функции.
Прототипы В 14 Исследование сложной функции, содержащей показательную, логарифмическую функции и функцию квадратный корень. МБОУ г. Мурманска гимназия.
ПРИМЕНЕНИЕ СВОЙСТВА ОГРАНИЧЕННОСТИ ФУНКЦИИ. Применение свойств функций к решению уравнений и неравенств Работа посвящена одному из нестандартных методов.
Методическая разработка по Алгебре и началам анализа преподавателя математики Симаньковой М.Л. План разработки: Область определения функции. Линейная функция.
Решение квадратного неравенства с помощью графика квадратичной функции Методическая разработка учителя Поляковой Е. А.
titlemaster_med
Этапы 1. Найти f / (x) 2. Найти критические точки, взять те, которые принадлежат данному отрезку. 3. Вычислить значения функции в критических точках и.
Исследовательская работа по алгебре. Обобщить, систематизировать и расширить знания по теме «Решение неравенств второй степени с одной неизвестной».
Руководитель: учитель математики Ускова Н.Н. МОУ лицей г.
Решение задания С 3 (вариант 6) из диагностической работы за г.
Логарифмические задания на едином государственном экзамене.
Квадратичная функция. Цель урока: Знать: Определение квадратичной функции Алгоритм построения графика квадратичной функции вида y = a x² и y = a x² + с.
Показательная функция, уравнения и неравенства в заданиях ЕГЭ. И.В.Богданова.
Производная. Подготовка к ЕГЭ, В8. Задача 1.1. На рисунке изображен график функции y = f (x), и касательная к нему в точке с абсциссой х 0. Найдите значение.
Свойства функции. Алгебра и начала анализа, 10 класс. Воробьев Леонид Альбертович, г.Минск.
Квадратичная функция, её свойства, график ? Понятие функции Определение квадратичной функции Область определения функции График.
14 (исследование функции ЕГЭ 2012) Соловьёв Леонид Максимович, Соловьёва Галина Николаевна, учителя математики МОУ «СОШ 3» г. Анжеро-Судженск Кемеровской.
ГБОУ СОШ 1084 Учитель математики Смирнова Н.В. ГБОУ СОШ 1084 Учитель математики Смирнова Н.В.
Транксрипт:

Как решать В-14 без производной. Подготовка к ЕГЭ МБОУ СОШ 46,г. Хабаровск. Учитель математики – Кочерга Г.Н.

Иногда в задачах B14 попадаются «плохие» функции, для которых сложно найти производную. Раньше такое было лишь на пробниках, но сейчас эти задачи настолько распространены, что уже не могут быть игнорированы при подготовке к настоящему ЕГЭ. В этом случае работают другие приемы, один из которых монотонность. Определение Функция f (x) называется монотонно возрастающей на отрезке [a; b], если для любых точек x 1 и x 2 этого отрезка выполняется следующее: x 1 < x 2 f (x 1 ) < f (x 2 ).

Определение. Функция f (x) называется монотонно убывающей на отрезке [a; b], если для любых точек x 1 и x 2 этого отрезка выполняется следующее: x 1 f (x 2 ). Другими словами, для возрастающей функции чем больше x, тем больше f (x). Для убывающей функции все наоборот: чем больше x, тем меньше f (x).

Примеры. Логарифм монотонно возрастает, если основание a > 1, и монотонно убывает, если 0 0. f (x) = log a x (a > 0; a 1; x > 0)

Примеры. Арифметический квадратный (и не только квадратный) корень монотонно возрастает на всей области определения:

Примеры. Показательная функция ведет себя аналогично логарифму: растет при a > 1 и убывает при 0 0:

Примеры. Наконец, степени с отрицательным показателем. Можно записывать их как дробь. Имеют точку разрыва, в которой монотонность нарушается.

Все эти функции никогда не встречаются в чистом виде. В них добавляют многочлены, дроби и прочий бред, из-за которого становится тяжело считать производную. Что при этом происходит сейчас разберем.

Координаты вершины параболы Чаще всего аргумент функции заменяется на квадратный трехчлен вида Его график стандартная парабола, в которой нас интересуют ветви: Ветви параболы могут уходить вверх (при a > 0) или вниз (a < 0). Они задают направление, в котором функция может принимать бесконечные значения; Вершина параболы точка экстремума квадратичной функции, в которой эта функция принимает свое наименьшее (для a > 0) или наибольшее (a < 0) значение.

Наибольший интерес представляет именно вершина параболы, абсцисса которой рассчитывается по формуле:

Итак, мы нашли точку экстремума квадратичной функции. Но если исходная функция монотонна, для нее точка x 0 тоже будет точкой экстремума. Таким образом, сформулируем ключевое правило:

Точки экстремума квадратного трехчлена и сложной функции, в которую он входит, совпадают. Поэтому можно искать x 0 для квадратного трехчлена, а на функцию забить.

Из приведенных рассуждений остается непонятным, какую именно точку мы получаем: максимума или минимума. Однако задачи специально составляются так, что это не имеет значения. Судите сами:

Отрезок [a; b] в условии задачи отсутствует. Следовательно, вычислять f (a) и f (b) не требуется. Остается рассмотреть лишь точки экстремума; Но таких точек всего одна это вершина параболы x 0, координаты которой вычисляются буквально устно и без всяких производных.

Таким образом, решение задачи резко упрощается и сводится всего к двум шагам: Выписать уравнение параболы и найти ее вершину по формуле: Найти значение исходной функции в этой точке: f (x 0 ). Если никаких дополнительных условий нет, это и будет ответом.

На первый взгляд, этот алгоритм и его обоснование могут показаться сложными. Я намеренно не выкладываю «голую» схему решения, поскольку бездумное применение таких правил чревато ошибками.

Рассмотрим настоящие задачи из пробного ЕГЭ по математике именно там данный прием встречается чаще всего. Заодно убедимся, что таким образом многие задачи B-14 становятся почти устными.

Найдите наименьшее значение функции : Решение: Под корнем стоит квадратичная функция График этой функции парабола ветвями вверх, поскольку коэффициент a = 1 > 0. Вершина параболы: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3

Поскольку ветви параболы направлены вверх, в точке x 0 = 3 функция принимает наименьшее значение. Корень монотонно возрастает, значит x 0 точка минимума всей функции. Имеем: Ответ: 2

Найдите наименьшее значение функции: Решение Под логарифмом снова квадратичная функция.График парабола ветвями вверх, т.к. a = 1 > 0. Вершина параболы: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1

Итак, в точке x 0 = 1 квадратичная функция принимает наименьшее значение. Но функция y = log 2 x монотонная, поэтому: y min = y(1) = log 2 ((1)2 + 2 · (1) + 9) =... = log 2 8 = 3 Ответ: 3

Найдите наибольшее значение функции: Решение: В показателе стоит квадратичная функция Перепишем ее в нормальном виде: Очевидно, что график этой функции парабола, ветви вниз (a = 1 < 0). Поэтому вершина будет точкой максимума: x 0 = b/(2a) = (4)/(2 · (1)) = 4/(2) = 2

Исходная функция показательная, она монотонна, поэтому наибольшее значение будет в найденной точке x 0 = 2: Ответ: 11

Внимательный ученик наверняка заметит, что мы не выписывали область допустимых значений корня и логарифма. Но этого и не требовалось: внутри стоят функции, значения которых всегда положительны.

Следствия из области определения функции Иногда для решения задачи B14 недостаточно просто найти вершину параболы. Искомое значение может лежать на конце отрезка, а вовсе не в точке экстремума. Если в задаче вообще не указан отрезок, смотрим на область допустимых значений исходной функции. А именно:

1. Аргумент логарифма должен быть положительным: y = log a f (x) f (x) > 0 2. Арифметический квадратный корень существует только из неотрицательных чисел: 3.Знаменатель дроби не должен равняться нулю:

Обратите внимание еще раз: ноль вполне может быть под корнем, но в логарифме или знаменателе дроби никогда. Посмотрим, как это работает на конкретных примерах: Найдите наибольшее значение функции:

Решение Под корнем снова квадратичная функция. Ее график парабола, но ветви направлены вниз, поскольку a = 1 < 0. Значит, парабола уходит на минус бесконечность, что недопустимо, поскольку арифметический квадратный корень из отрицательного числа не существует.

Выписываем область допустимых значений (ОДЗ):

Теперь найдем вершину параболы: x 0 = b/(2a) = (2)/(2 · (1)) = 2/(2) = 1 Точка x 0 = 1 принадлежит отрезку ОДЗ и это хорошо. Теперь считаем значение функции в точке x 0, а также на концах ОДЗ: y(3) = y(1) = 0 Итак, получили числа 2 и 0. Нас просят найти наибольшее это число 2. Ответ: 2

Найдите наименьшее значение функции:

Решение Внутри логарифма стоит квадратичная функция. Это парабола ветвями вниз, но в логарифме не может быть отрицательных чисел, поэтому выписываем ОДЗ:

Обратите внимание: неравенство строгое, поэтому концы не принадлежат ОДЗ. Этим логарифм отличается от корня, где концы отрезка нас вполне устраивают. Ищем вершину параболы: x 0 = b/(2a) = 6/(2 · (1)) = 6/(2) = 3 Вершина параболы подходит по ОДЗ: x 0 = 3 (1; 5). Но поскольку концы отрезка нас не интересуют, считаем значение функции только в точке x 0 :

y min = y(3) = log 0,5 (6 · ) = = log 0,5 (18 9 5) = log 0,5 4 = 2 Ответ: -2