Моделирование сетевого взаимодействия астрономических роботизированных комплексов Дмитриев Николай Владимирович Ставропольский государственный университет
Задачи: Учебно-эстетические Астрофотография Учебно-научные Мониторинг ИСЗ Поиск новых и сверхновых звезд Изучение атмосферных явлений Обнаружение и расчет траекторий астероидов, сближающихся с Землей и объектов «косм. мусора» Научные Поиск оптических ореолов GRB Поиск экзопланет Фотометрия и спектроскопия
Сеть малых телескопов – сеть массового обслуживания Обслуживающие аппараты - телескопы малого и среднего диаметра. Транзакты (обслуживаемые заявки) - Заявки на активные виртуальные наблюдения: удаленный доступ роботизированный мониторинг браузерное наблюдение с указанием параметров - Заявки на пассивные виртуальные наблюдения: мониторинг текущих задач, без возможности контроля получение астрофизических данных ранее прошедших наблюдений Каналы связи – общедоступные сети и Internet
Географическая распределенность Зона (В. Д.)до 30°до 55°до 75°до 95°до 115°до 135°до 155°свыше 155° Число узлов Потери, %
Этапы разработки и внедрения Поиск потенциальных участников (университетские центры и научные организации) Разработка, либо приобретение телескопов, имеющих базовые средства автоматизации, стандартизация Единоначальное либо иерархическое управление сетью из центра, отвечающего за прием заявок и принятие решений (контролируется оператором) Автоматизация процесса принятия решений Делегирование ряда функций центра конечным узлам сети (стратегия коллективного управления) Ведение раздельных очередей заявок
Модель сети с runtime-потерями λ i β i (все входящие заявки обслуживаются) Runtime-потери – неудовлетворительный результат, получившийся вследствие аппаратного сбоя, ошибок в процессе наблюдений либо из-за изменившихся погодных условий Взаимодействие узлов сети целесообразно рассматривать как марковский процесс с непрерывным временем Входящий поток заявок - простейший
Граф состояний сети (N=2) P 0 (t) – вероятность перехода в состояние 0 (обслуженная заявка поступила в центр, или заявок нет). Считаем, что в случае поступления в центр новой заявки, она немедленно отправляется на один из узлов P 1 (t), P 2 (t) – вероятности переходов в состояния 1 или 2 (заявка обслуживается на телескопе 1 или 2) P 3 (t) – поглощающее состояние (неудачное обслуживание) Узел 1 Центр Узел 2 Отказ λ1λ1 λ2λ2 β1·F1β1·F1 β2·F2β2·F2 β1·F1*β1·F1* β2·F2*β2·F2*
Решение, полученное для N=2 Решение получено с использованием уравнения Колмогорова, преобразований Лапласа, методов матричной алгебры
Решение, полученное для N-узлов Параметры F * можно будет оценить, исходя из статистических данных о погоде, а также путем накопления и анализа данных об аппаратных сбоях
Модель сети с явными потерями В реальных условиях возникают ситуации, когда заявка не может быть исполнена, ввиду того, что все узлы сети заняты Астрономический прибор может выполнять в определенный момент времени только одну заявку (телескоп может осуществлять мониторинг только одной области неба) Далеко не каждую заявку можно поставить в очередь (мониторинг скоротечного, быстропеременного события и тд)
Имитационная модель сети типа M/G/m/L M – время прихода заявки распределено экспоненциально G – длительность обслуживания произвольная (для расчета промежутков длительности обслуживания используется гиперэкспоненциальное распределение) m – сеть с кол-вом узлов, равным m L – дисциплина обслуживания с явными потерями Разработана программная реализация модели: Входные данные: число телескопов, продолжительность этапа наблюдений, параметр, характеризующий входящий поток и ряд параметров, характеризующий длительность обслуживания, число итераций. Выходные данные: файл с информацией, необходимой для статистической обработки. Особенно важной является информация, характеризующая качество обслуживания (потери по числу заявок, длительность интервалов простоя).
Численные эксперименты с моделью Входящая нагрузка (представлена на графиках далее) Длительность этапа обслуживания – 600мин (10 ч) Продолжительность обслуживания 1 заявки – от 10 до 70 мин. При заданных параметрах, коэффициент вариации составил 113% Число телескопов – 20 Каждая точка графика усреднена по 10 итерациям
Потери по числу заявок Расхождения обусловлены тем, что формула Эрланга не учитывает потери, вызванные остановкой системы вследствие окончания периода обслуживания (в данном случае – восхода Солнца и прекращения наблюдений) Целесообразно использовать имитационное моделирование
Оптимизация времен простоя При простое телескопы сети целесообразно занять неприоритетными задачами.
Спасибо за внимание