Выполнила: Ученица 9-Б класса Галимова Диана. от.греч. παραβολή приложение) геометрическое место точек, равноудалённых от данной прямой (называемой директрисой.

Презентация:



Advertisements
Похожие презентации
ПАРАБОЛА И ПРИМЕНЕНИЕ ЕЁ СВОЙСТВ В НАУКЕ И ТЕХНИКЕ Автор работы : Меньщикова Анастасия, ученица 8 « В » класса МАОУ лицей 13 п. Краснообска, Учитель :
Advertisements

Построение параболы Параболу можно построить «по точкам» с помощью циркуля и линейки, не зная уравнения и имея в наличии только фокус и директрису. Вершина.
Связь с космическим миром Траектории некоторых космических тел (комет, астероидов и других), проходящих вблизи звезды или другого массивного объекта (нейтронной.
Построение графика квадратичной функции Повторно - обобщающий урок.
Замечательные кривые: Эллипс, гипербола, парабола Презентацию подготовил Тогуспаев Багдат Муратович группа С ж Презентацию подготовил Тогуспаев.
ПАРАБОЛА И ЕЕ ПРИМЕНЕНИЕ Автор работы : Чекуреева Любовь, ученица 9 « А » класса МОУ « Грабцевская СОШ », учитель : Краузе Татьяна Валентиновна.
Презентация на тему: Парабола и ее свойства Выполнил: Ученик 10 б класса Гречкин Ярослав Учитель Шамсутдинова Р.Р. Школа
§ 5. Кривые второго порядка Кривые второго порядка делятся на 1) вырожденные и 2) невырожденные Вырожденные кривые второго порядка это прямые и точки,
3. Парабола Пусть – некоторая прямая на плоскости, F – некоторая точка плоскости, не лежащая на прямой. ОПРЕДЕЛЕНИЕ. Параболой называется геометрическое.
Упражнение 1 На клетчатой бумаге постройте несколько точек, равноудаленных от данной точки F и данной прямой d. Соедините их плавной кривой.
Элементарная теория конических сечений.. Предварительные замечания Общее уравнение второй степени относительно переменных х и у может содержать члены.
§ Кривые второго порядка Кривые второго порядка делятся на 1) вырожденные и 2) невырожденные Вырожденные кривые второго порядка это прямые и точки, которые.
Квадратичная функция, её свойства и график.
Парабола Презентацию подготовил Ученик 5 А класса Градов Антон.
Кривые второго порядка Выполнила: студентка группы 2У31 Полымская Дарья.
ПАРАБОЛА. РОДСТВЕННИКИ ПАРАБОЛЫ - БЛИЖНИЕ И ДАЛЬНИЕ Авторы работы : Сильченко Ольга, Изотова Анна ученицы 9 класса МБОУ Страшевичская СОШ учитель : Самолысова.
Определение Поверхность второго порядка геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида в котором по.
ГЕОМЕТРИЯ КОНУС α Пусть дана некоторая плоскость α.
Выполнила: Лукина Елена 11 класс, ГОУ СОШ 498, Москва, ЦАО Руководитель проекта: Чернецкая Татьяна Александровна.
Упражнение 1 На клетчатой бумаге постройте несколько точек, равноудаленных от данной точки F и данной прямой d. Соедините их плавной кривой.
Транксрипт:

Выполнила: Ученица 9-Б класса Галимова Диана

от.греч. παραβολή приложение) геометрическое место точек, равноудалённых от данной прямой (называемой директрисой параболы) и данной точки (называемой фокусом параболы). ПАРАБОЛА

Наряду с эллипсом и гиперболой, парабола является коническим сечением. Она может быть определена как коническое сечение с единичным эксцентриситетом. Каноническое сечение параболы

Пучок параллельных оси лучей, отражаясь в параболе, собирается в её фокусе. Для параболы фокус находится в точке (0,25; 0). Если фокус параболы отразить относительно касательной, то его образ будет лежать на директрисе. Парабола является антиподерой прямой. Все параболы подобны. Расстояние между фокусом и директрисой определяет масштаб. При вращении параболы вокруг оси симметрии получается эллиптический параболоид. Свойства параболы Парабола кривая второго порядка. Она имеет ось симметрии, называемой осью параболы. Ось проходит через фокус и перпендикулярна директрисе.

Параболу можно построить «по точкам» с помощью циркуля и линейки, не зная уравнения и имея в наличии только фокус и директрису. Вершина является серединой отрезка между фокусом и директрисой. На директрисе задаётся произвольная система отсчёта с нужным единичным отрезком. Каждая последующая точка является пересечением серединного перпендикуляра отрезка между фокусом и точкой директрисы, находящейся на кратном единичному отрезку расстоянии от начала отсчёта, и прямой, проходящей через эту точку и параллельной оси параболы. Построение параболы

Траектории некоторых космических тел (комет, астероидов), проходящих вблизи звезды или другого массивного объекта (звезды или планеты) на достаточно большой скорости имеют форму параболы (или гиперболы). Эти тела вследствие своей большой скорости и малой массы не захватываются гравитационным полем звезды и продолжают свободный полёт. Это явление используется для гравитационных манёвров космических кораблей (в частности аппаратов Вояджер). При отсутствии сопротивления воздуха траектория полёта тела в приближении однородного гравитационного поля представляет собой параболу. При вращении сосуда с жидкостью вокруг вертикальной оси поверхность жидкости в сосуде и вертикальная плоскость пересекаются по параболе. Свойство параболы фокусировать пучок лучей, параллельных оси параболы, используется в конструкциях прожекторов, фонарей, фар, а также телескопов- рефлекторов (оптических, инфракрасных, радио…), в конструкции узконаправленных (спутниковых и других) антенн, необходимых для передачи данных на большие расстояния, солнечных электростанций и в других областях. Форма параболы иногда используется в архитектуре для строительства крыш и куполов. Парабола в окружающем мире

Параболическая орбита и движение спутника по ней Падение баскетбольного мяча Параболическая солнечная электростанция в Калифорнии, США

Параболические траектории струй воды Вращающийся сосуд с жидкостью Форма параболы в архитектуре