Анисимова Эллина 911 МП. Нейронные сети Нечёткая логика Нейро- нечёткие системы.

Презентация:



Advertisements
Похожие презентации
Лекция 2 по дисциплине «Искусственный интеллект и нейросетевое управление» тема: «Нечёткая логика» Мамонова Татьяна Егоровна
Advertisements

Нейросетевые технологии в обработке и защите данных Обработка данных искусственными нейронными сетями (ИНС). Лекция 5. Алгоритмы обучения искусственных.
Вероятностная НС (Probability neural network) X 1 X n... Y 1 Y m Входной слой Скрытый слой (Радиальный) Выходной слой...
Нечеткие множества Основные понятия, функция принадлежности.
Индивидуальное задание по математической логике Выполнили: студенты 3 курса математического фак-та гр Голощапова Виктория Ганенко Денис.
Система управления РТК Основная задача системы управления роботом – автоматизация деятельности человека-оператора. Составные части: Система технического.
Нейросетевые технологии в обработке и защите данных Защита информации иммунными нейронными сетями Лекция 10. Нечеткие операторы и отношения. Нечеткие правила.
Использование нейросимулятора при определении внешнего вида ребенка по параметрам родителей.
МОДУЛЬНАЯ АРХИТЕКТУРА НС. Каждая входная переменная связана только с одним из входов модулей. Выходы всех входных модулей соединены с модулем решения.
1. Cведения о нейронах и искусственных нейросетях.
Тема: «Архитектура и основные составные части интеллектуальных Систем»
Тема 10. Архитектура и алгоритмы обучения НС Основные парадигмы нейронных сетей обучения с учителем Однослойный перцептрон f f f х1.
Одно из наиболее перспективных направлений разработки принципиально новых архитектур вычислительных систем тесно связано.
ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ и ИНФОРМАТИКИ Тарасюк Александр Евгеньевич СИСТЕМА РАСПОЗНАВАНИЯ ЛИЦ НА ОСНОВЕ НЕЙРОННОЙ СЕТИ.
StatSoft Russia. Основные идеи нейросетевых методов анализа Простота и однородность отдельных элементов - «нейронов» Все основные свойства сети определяются.
Нейросетевые технологии в обработке и защите данных Защита информации иммунными нейронными сетями Лекция 11. Системы н ечеткого вывода 1.
Использование нейронных сетей для прогнозирования изменений на фондовом рынке Михаил Бондаренко 14 August
1 Биологический Нейрон Мозг содержит 10 миллиардов нейронов Тысячи типов нейронов соединены между собой 100 триллионов связей Нейрон может находиться,
1 Главным содержанием нейросетевой технологии является создание электронных и программных аналогов естественных нейронных сетей и использование этих аналогов.
Интеллектуальные системы в Машиностроении. Применение нечеткой логики в системах автоматического Управления. Все данные взяты с сайта
Транксрипт:

Анисимова Эллина 911 МП

Нейронные сети Нечёткая логика Нейро- нечёткие системы

Искусственный интеллект это экспериментальная научная дисциплина, задача которой воссоздание с помощью искусственных устройств разумных рассуждений и действий.

Lotfi Askar Zadeh

Ebrahim Mamdani

Нечёткие множества. Нечётким множеством С называется множество упорядоченных пар вида где MFc(x) – степень принадлежности x к нечёткому множеству C; x X, X – универсальное множество

Нечёткое множество и чёткое (crisp) классическое множество

Пример «Горячий чай" X= 0 C C; С = 0/0; 0/10; 0/20; 0,15/30; 0,30/40; 0,60/50; 0,80/60; 0,90/70; 1/80; 1/90; 1/100.

Пересечение двух нечетких множеств (нечеткое "И"): MF AB (x)=min(MF A (x), MF B (x)). Объединение двух нечетких множеств (нечеткое "ИЛИ"): MF AB (x)=max(MF A (x), MF B (x)).

Согласно Лотфи Заде лингвистической называется переменная, значениями которой являются слова или предложения естественного или искусственного языка. Значениями лингвистической переменной могут быть нечеткие переменные, т.е. лингвистическая переменная находится на более высоком уровне, чем нечеткая переменная.

Каждая лингвистическая переменная состоит из: названия; множества своих значений, которое также называется базовым терм- множеством T. Элементы базового терм-множества представляют собой названия нечетких переменных; универсального множества X; синтаксического правила G, по которому генерируются новые термы с применением слов естественного или формального языка; семантического правила P, которое каждому значению лингвистической переменной ставит в соответствие нечеткое подмножество множества X.

Описание лингвистической переменной "Цена акции" X=[100;200] Базовое терм-множество: "Низкая", "Умеренная", "Высокая"

Треугольная функция принадлежности

Трапецеидальная функция принадлежности

Функция принадлежности гауссова типа

Описание лингвистической переменной "Цена акции" X=[100;200] Базовое терм-множество: "Низкая", "Умеренная", "Высокая"

Описание лингвистической переменной "Возраст"

– входные переменные; y – выходная переменная; – заданные нечёткие множества с функциями принадлежности. Результатом нечёткого вывода является чёткое значение переменной y* на основе заданных чётких значений

Механизм нечёткого логического вывода

Схема нечёткого вывода по Мамдани

«Мягкие вычисления" (Soft computing) нечёткая логика, искусственн ые нейронные сети, вероятностн ые рассуждени я эволюционн ые алгоритмы

Нейронные сети – самообучающиеся системы, имитирующие деятельность человеческого мозга

Warren Sturgis McCulloch

Walter Pitts

Нейронные сети

Искусственный нейрон Х = (x 1, x 2,…, x n ) – множество входных сигналов, поступающих на искусственный нейрон W = (w 1, w 2,…, w n ) – множество весов в совокупности (каждый вес соответствует «силе» одной биологической синаптической связи)

Линейная передаточная функция

Пороговая функция активации

Сигмоидальная функция активации

Схема простой нейросети

Однослойный трехнейронный персептрон

Двухслойный персептрон

Алгоритм обратного распространения ошибки

Построение сети (после выбора входных переменных) Выбрать начальную конфигурацию сети Провести ряд экспериментов с различными конфигурациями, запоминая при этом лучшую сеть (в смысле контрольной ошибки). Для каждой конфигурации следует провести несколько экспериментов. Если в очередном эксперименте наблюдается недообучение (сеть не выдаёт результат приемлемого качества), попробовать добавить дополнительные нейроны в промежуточный слой (слои). Если это не помогает, попробовать добавить новый промежуточный слой. Если имеет место переобучение (контрольная ошибка стала расти), попробовать удалить несколько скрытых элементов (а возможно и слоёв).

Задачи Data Mining, решаемые с помощью нейронных сетей Классификация (обучение с учителем) Прогнозирование Кластеризация (обучение без учителя) распознавание текста, распознавание речи, идентификация личности найти наилучшее приближение функции, заданной конечным набором входных значений (обучающих примеров задача сжатия информации путем уменьшения размерности данных

Задача "Выдавать ли кредит клиенту" в аналитическом пакете Deductor (BaseGroup) Обучающий набор - база данных, содержащая информацию о клиентах: – Сумма кредита, – Срок кредита, – Цель кредитования, – Возраст, – Пол, – Образование, – Частная собственность, – Квартира, – Площадь квартиры. Необходимо построить модель, которая сможет дать ответ, входит ли Клиент, желающий получить кредит, в группу риска невозврата кредита, т.е. пользователь должен получить ответ на вопрос "Выдавать ли кредит?" Задача относится к группе задач классификации, т.е. обучения с учителем.

Шаг "Настройка назначений столбцов"

Шаг "Разбиение исходного набора данных на подмножества"

Шаг "Структура нейронной сети"

Шаг "Настройка процесса обучения нейронной сети"

Шаг "Обучение нейронной сети"

Таблица сопряженности

Нечёткие нейронные сети (fuzzy-neural networks) осуществляют выводы на основе аппарата нечёткой логики, причём параметры функций принадлежности настраиваются с использованием алгоритмов обучения нейронных сетей (НС).

Нечеткие нейроны ИЛИ-нейрон: И-нейрон:

Adaptive-Network-Based Fuzzy Inference System (ANFIS) – адаптивная сеть нечёткого вывода

Вопросы 1.Что является характеристикой нечёткого множества? 2.Приведите определение нейронных сетей. 3.Перечислите области «мягких вычислений» (Soft computing). 4.Приведите пример нечёткой нейронной системы.

СПАСИБО ЗА ВНИМАНИЕ!