Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству,

Презентация:



Advertisements
Похожие презентации
Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству,
Advertisements

Учитель математики Шурупова С.В, Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся.
"Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук". Льюис Кэрролл.
Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству,
Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству,
«Правильные многогранники» Работа учениц 10 класса «Б» Латышевой Насти Бычковой Сони.
Многогранники вокруг нас Математика владеет не только истиной, но и высшей красотой - отточенной и строгой, возвышенно чистой и стремящейся к подлинному.
Многогранники вокруг нас Подготовила учитель математики и информатики Полищук И.В.
Многогранни ки вокруг нас Самохвалова Т.М Математика владеет не только истиной, но и высшей красотой - отточенной и строгой, возвышенно чистой и стремящейся.
Многогранники вокруг нас Выполнили: ученицы 11«а» класса МОУ СОШ 4 «Центр образования» Кудрявцева А. Фоминых А г.
ПРАВИЛЬНЫЙ МНОГОГРАННИК В МАТЕМАТИКЕ, ПРИРОДЕ И НАУКЕ. ЭЛЕМЕНТЫ СИММЕТРИИ ПРАВИЛЬНЫХ МНОГОГРАННИКОВ.
Работу выполнила: Абдуллина Альфиза, ученица 8 класса Руководитель: Спирина Ирина Марксовна, учитель математики Исследовательская работа МКОУ «Яланская.
Поговорим о многогранниках Выполнила Малашина Ольга Владимировна, учитель математики МОУ СОШ с. Липовка.
Симметрия в пространстве Понятие правильного многогранника Элементы симметрии правильных многогранников.
Мир многогранников Математика владеет не только истиной, но и высшей красотой - отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству,
Правильные Многогранники. Работа Пушкиной Марии и Широкова Ивана.
ПРАВИЛЬНЫЕ МНОГОГРАННИКИ. «Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных.
Пирамида Хеопса Выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и тем же числом сторон и в.
ПРАВИЛЬНЫЕ МНОГОГРАННИКИ «Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных.
Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству,
Транксрипт:

Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства. Бертран Рассел

«эдра» - грань «тетра» - 4 «гекса» - 6 «окта» - 8 «икоса» - 20 «додека» - 12 ПРАВИЛЬНЫЙ МНОГОГРАННИК- выпуклый многогранник, грани которого равные правильные многоугольники и в каждой вершине которого сходится одно и то же число ребер.

ПРАВИЛЬНЫЙ МНОГОГРАННИК- Гексаэдр Тетраэдр Октаэдр Додекаэдр Икосаэдр

Поверхность тетраэдра состоит из четырех равносторонних треугольников, сходящихся в каждой вершине по три. ТЕТРАЭДР

Куб имеет шесть квадратных граней, сходящихся в каждой вершине по три. КУБ (ГЕКСАЭДР)

Октаэдр имеет восемь треугольных граней, сходящихся в каждой вершине по четыре. ОКТАЭДР

Додекаэдр имеет двенадцать пятиугольных граней, сходящихся в вершинах по три. ДОДЕКАЭДР

Поверхность икосаэдра состоит из двадцати равносторонних треугольников, сходящихся в каждой вершине по пять. ИКОСАЭДР

Французский математик Пуансо в 1810 году построил четыре правильных звездчатых многогранника: малый звездчатый додекаэдр, большой звездчатый додекаэдр, большой додекаэдр и большой икосаэдр. В 1812 году французский математик О. Коши доказал, что кроме пяти «платоновых тел» и четырех «тел Пуансо» больше нет правильных многогранников.

Малый звездчатый додекаэдр Большой звездчатый додекаэдр Большой икосаэдрБольшой додекаэдр

Правильные многогранники иногда Называют Платоновыми телами, поскольку они занимают видное место в философской картине мира, разработанной великим мыслителем Древней Греции Платоном.

огонь вода воздух земля вселенная тетраэдр икосаэдр октаэдр гексаэдр додекаэдр

. И. Кеплер попытался привести орбиты пяти известных тогда планет в соответствие с поверхностями пяти Платоновых тел. Его модель Солнечной системы получила название «Космического кубка» Кеплера.

Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук. Л. Кэррол

Кристаллы белого фосфора образованы молекулами Р 4. Такая молекула имеет вид тетраэдра. Фосфорноватистая кислота Н 3 РО 2.

Молекулы зеркальных изомеров молочной кислоты.

Строение молекулы метана.

Строение решетки алмаза.

Кристаллы поваренной соли.

Вирус полиомиелита имеет форму додекаэдра.

Архимедовыми телами называются полуправильные однородные выпуклые многогранники, то есть выпуклые многогранники, все многогранные углы которых равны, а грани - правильные многоугольники нескольких типов.