1 Исследовательская работа по математике «Решение квадратных уравнений различными способами» Ученица 10 класса Усманова Лиана Руководитель: Матвеева С.Н.

Презентация:



Advertisements
Похожие презентации
Решение квадратных уравнений различными способами Ученик 8 б класса Шаяхметов Руслан Учитель: Матвеева С.Н.
Advertisements

10 способов решения квадратных уравнений Работу выполнила учитель математики МБОУ « СОШ 31» г. Энгельса Волосожар М. И.
История развития квадратных уравнений. Квадратные уравнения в Древнем Вавилоне: Х 2 +Х=3/4 Х 2 -Х=14,5.
Автор работы: Уразгалиева Алсу, ученица 10 класса, МОУСОШ пгт Красная Поляна. Руководитель: Камаева И.Б., учитель математики.
Квадратные уравнения в Древнем Вавилоне Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью.
1.1 Древний Вавилон Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные.
Учитель математики Кучеренко А.А. Цель работы: Знакомство с различными способами решения квадратных уравнений. Задачи: Подобрать информацию по теме из.
Автор:Рыбалка Иван Руководитель: Васильченко В.Д..
Бронфина О. А., учитель математики МБОУ « СОШ 22» г. Миасс. Бронфина О. А., учитель математики МБОУ « СОШ 22» г. Миасс.
10 способов решения квадратных уравнений История развития квадратных уравнений.
Открыть Способы решений полных квадратных уравнений. Разложение Выделение Теорема Виета «Переброска» Свойство коэффициентов Графическое решение Выйти С.
МБОУ «СОШ 2» г.Саянска Автор: обучающийся 8 В класса МБОУ «СОШ 2» г. Саянска Павельев Иван Научный руководитель: учитель математики МБОУ «СОШ 2» г. Саянска.
Квадратные уравнения. Квадратные уравнения в Древнем Вавилоне Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. Применяя современную.
Автор работы: ученик 8 класса Лапшин Виталий. ОБЪЕКТ ИССЛЕДОВАНИЯ: история математики ОБЪЕКТ ИССЛЕДОВАНИЯ: история математики ПРЕДМЕТ ИССЛЕДОВАНИЯ: появление.
A x 2 + b x + c = 0 x 2 + px + q = 0.
ГОУ «СОШ с. Тальменка» ученик 8 класса Мнеян Давид 2004 г. Работу выполнил: ту выполнил :
10 способов решения квадратного уравнения Математика 9 класс ах 2 + bх + с = 0.
Х²+2х-7=0 х²+2х=0 (х-5)(2х+4)=0 4х²+х-5=0 3х²-4х+7=0 Выполнил: Сизиков Станислав Учитель: Курилова М.Д.
Классная работа Урок 2. Определение Квадратным уравнением называется уравнение вида:
Способ 1. Разложение левой части уравнения на множители. Ответ: 5; х - 8 х.
Транксрипт:

1 Исследовательская работа по математике «Решение квадратных уравнений различными способами» Ученица 10 класса Усманова Лиана Руководитель: Матвеева С.Н. МБОУ «Кадетская школа» Г.Чистополь Татарстан

2 Содержание 1. Определение квадратного уравнения, его виды 2. Из истории квадратных уравнений 3. Различные способы решения квадратных уравнений: 1) Разложение левой части уравнения на множители 2)Решение квадратных уравнений по формуле 3)Решение уравнений с использованием теоремы Виета 4)Решение уравнений способом переброски 5)Свойства коэффициентов квадратного уравнения 6) Графическое решение квадратного уравнения 7) Решение квадратных уравнений с помощью циркуля и линейки 8) Решение квадратных уравнений с помощью номограммы

3 1. Определение квадратного уравнения, его виды Квадратным уравнением называется уравнение вида ax + bx + c = 0, где х- переменная, а,b и с-некоторые числа, причем, а 0.

4 Неполные квадратные уравнения 1) ах + с = 0, где с 0;в=0 2) ах + bх = 0, где b 0;с=0 3) ах = 0, где в=0,с=0

5 Из истории квадратных уравнений Квадратные уравнения в Древнем Вавилоне Квадратные уравнения умели решать около 2000 лет до нашей эры вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

6 Квадратные уравнения в Индии Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта(VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ах 2 +вх=с, а 0. В этом уравнении коэффициенты, кроме а,могут быть и отрицатель-ными. Правило Брахмагупты по существу совпадает с нашим.

7 Квадратные уравнения в Европе XIII-XVII вв. Формулы решения квадратных уравнений по образцу ал-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи.Книга способствовала распространению алгебраических знаний в Италии, в Германии, Франции и др. странах Европы.

8 Квадратные уравнения в Европе XIII- XVII вв. В глубокой древности была найдена формула для решения квадратного уравнения с помощью радикалов (корней). Вывод формулы имеется у Виета,но он признавал только положительные корни. Итальянские математики Тарталья, Кордано, Бомбелли в XVI в.учитывают и отрицательные корни. В XVII в. благодаря трудам Жирара, Декарта, Ньютона способ решения квадратных уравнений принимает современный вид.

9 Различные способы решения квадратных уравнений 1. Разложение левой части уравнения на множители Решим уравнение х + 10х – 24 = 0. Разложим левую часть уравнения на множители: Х + 10х – 24 = х + 12х – 2х – 24 = х (х + 12) – 2 (х +12) = (х + 12)(х – 2). Следовательно, уравнение можно переписать так: (х + 12)(х – 2) = 0.

10 Разложение левой части уравнения на множители Так как произведение равно нулю, то по крайне мере один из его множителей равен нулю. Поэтому левая часть уравнения обращается в нуль при х = 2, а также при х = это означает, что числа 2 и – 12 являются корнями уравнения х + 10х – 24 = 0.

11 Решение квадратных уравнений по формуле Х1,2 =

12 4х + 7х + 3 = 0. а = 4, b = 7, с = 3, D = b – 4ас = 72 – 4· 4 ·3 = 49 – 48 = 1 Х=, х 2 = –1 х1 =

13 4х – 4х + 1 = 0, а =4, b = - 4, с = 1. D = b – 4ас= 16 – 441 = 0, D = 0, один корень; Х=

14 2х +3х + 4 = 0 а =2, b= 3, с = 4 D = b – 4ас=9 – 424 =9 – 32 = - 13 D < 0. Уравнение не имеет корней.

15 Решение уравнений с использованием теоремы Виета (прямой и обратной) Как известно, приведенное квадратное уравнение имеет вид х2 + px + q = 0. Его корни удовлетворяют теореме Виета, которая при а = 1 имеет вид Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

16 Теорема Виета для квадратного уравнения ах +вх +с = 0 имеет вид

17 Примеры Решить уравнение х – 9х + 14 =0 Попробуем найти два числа х и х, такие, что х +х = 9,х х = 14 Такими числами являются 2 и 7. По теореме, обратной теореме Виета, они и служат корнями заданного квадратного уравнения.

18 Решение уравнений способом «переброски» Умножая обе его части на а, получаем уравнение а х + а bх + ас = 0. Пусть ах = у, откуда х = ; тогда приходим к уравнению у + by + ас = 0, равносильного данному. Его корни у и у найдем с помощью теоремы Виета.

19 Примеры Решим уравнение 2х – 11х + 15 = 0. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение у – 11y +30 = 0. Согласно теореме Виета

20 Свойства коэффициентов квадратного уравнения. Если а + b + с = 0 (т.е. сумма коэффициентов уравнения равна нулю), то х1 = 1, х2 =. Если а - b + с = 0, или b = а + с, то х1 = – 1, х2 = –

21 Решим уравнение 345х – 137х – 208 = 0. Так как а + b + с = 0 (345 – 137 – 208 = 0), то х 1 = 1, х 2 = Решим уравнение 132х + 247х = 0 Т. к. а-b+с = 0 (132 – =0), то х1= - 1, х2= -

22 Если второй коэффициент b = 2k – четное число, то формулу корней можно записать в виде Х =

23 Графическое решение квадратного уравнения Решим графически уравнение х – 3х – 4 = 0. Решение. Запишем уравнение в виде х = 3х + 4. Построим параболу у = х и прямую у = 3х + 4. Прямую у = 3х + 4 можно построить по двум точкам М (0;4) и N (3;13). Прямая и парабола пересекаются в двух точках А и B с абсциссами х1 = – 1 и х2 = 4.

24 у=х2 у у=-3х х

25 Решение квадратных уравнений с помощью циркуля и линейки. Допустим, что искомая окружность пересекает ось абсцисс в точках B (х1 ;0) и D (х2 ;0), где х1 и х2 – корни уравнения ах + bх + с = 0 и проходит через точки А (0;1) и С(0; ) на оси ординат. Тогда по теореме о секущих имеем ОВОD = ОА ОС откуда ОС =.

26 у C(0, ) А(0; 1) В(х1, 0) D(х2, 0) S(

27 Решим графически уравнение х – 2х – 3 = 0. Определим координаты точки центра окружности по формулам Х=- У= = Проведем окружность радиуса S A, где А (0;1).

28 Ответ: х1 = – 1, х2 = 3 у А -1 3 х S(1,-1)

29 Решение квадратных уравнений с помощью номограммы. Это старый и незаслуженно забытый способ решения квадратных уравнений, помещенный на с.83 (см. Брадис В.М. Четырехзначные математические таблицы. – М., Просвещение, 1990). Таблица XXII. Номограмма для решения уравнения z + pz + q = 0. Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициентам определить корни уравнения.

30 Примеры 1.Для уравнения z2 – 9z + 8 = 0. Номограмма дает корни z1 = 8, 0 и z2 = 1, 2.Решим с помощью номограммы уравнение 2 z – 9 z + 2 = 0. Разделим коэффициенты Этого уравнения на 2, получим уравнение z – 4, = 0. Номограмма дает корни z1 = 4 и z2 = 0,5.

31 3. Для уравнения z2 + 5 z – 6 = 0 номограмма дает положительный корень z1 = 1,0, а отрицательный корень находим, вычитая положительный корень из – р, т.е. z2 = – р – 1 = = – 5 – 1 = – 6,0 (рис.13.) 4. Для уравнения z2 – 2z – 8 = 0 номограмма дает положительный корень z1 = 4,0, отрицательный равен z2 = – р – z1 = 2 – 4 = – 2,0.

32 Литература 1.Математика. Алгебра. Функции. Анализ данных. 8 класс: Учебник для общеобразовательных учреждений / Г. В. Дорофеев и др. – М.: Дрофа, Гусев В. А., Мордкович А. Г. Математика: Справочные материалы: Книга для учащихся. – М.: Просвещение, Глейзер Г. И. История математики в школе. – М.: просвещение, Брадис В. М. Четырехзначные математические таблицы для среденй школы. – м., просвещение, Окунев А. К. Квадратичные функции, уравнения и неравенства. Пособие для учителя. – М.: Просвещение, Пресман А.А. Решение квадратного уравнения с помощью циркуля и линейки. М., Квант, 4/72. С Дидактические материалы по алгебре. 8.М., Математика (приложение к газете «Первое сентября»), 21/96, 10/97, 24/97, 40/2000.

33 Выводы Квадратные уравнения играют огромную роль в развитии математики.. Эти знания могут пригодиться нам на протяжении всей жизни. Так как эти методы решения квадратных уравнений просты в применении, то они, безусловно, должно заинтересовать увлекающихся математикой учеников. Моя работа дает возможность по-другому посмотреть на те задачи, которые ставит перед нами математика.