Замечательные точки треугольника биссектрисы серединные перпендикуляры.

Презентация:



Advertisements
Похожие презентации
Четыре замечательные точки треугольника высоты биссектрисы серединные перпендикуляры медианы.
Advertisements

N K Теорема о биссектрисе угла. Каждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон. Обратная теорема. Точка, лежащая внутри угла.
72 Свойства биссектрисы угла и серединного перпендикуляра к отрезку Теорема Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон. Обратно:
Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон. Обратно: каждая точка, лежащая внутри угла и равноудаленная от сторон угла, лежит.
Презентация «Четыре замечательные точки треугольника» Выполнила О.А.Зуева, учитель математики МКОУ СОШ учебный год.
B A C E K M A B C K L M
Четыре замечательные точки треугольника. Теорема 1 Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон 1. Обратно: каждая точка, лежащая.
Четыре замечательные точки треугольникаТеорема 1 Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон 1. Обратно: каждая точка, лежащая.
А В С D Луч, исходящий из вершины угла и делящий его на два равных угла, называется биссектриссой этого угла. Луч AD – биссектриса угла ВАС.
Определение подобных треугольников Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны.
Окружность Выполнили: Ученики 8 Б класса школы 89 Вахрушева Ксения, Габдуллин Марат, Курдес Полина, Обухова Саша, Хуснутдинова Инзиля, Щенин Стас.
Учитель математики Гулова Римма Ивановна г. Старый Оскол Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа 12 с.
Четыре замечательные точки треугольника Составил: учитель математики Харитова С.В, МБОУ лицей 10 г.Красноярска МБОУ лицей 10 г.Красноярска.
Свойство и признак биссектрисы угла. B E A M K C 4 5 MK - ?
В треугольнике АСВ угол С- прямой. Прямая DВ перпендикулярна плоскости АВС. Провести из точки D перпендикуляр к прямой АС. С А В D.
Геометрия 8 класс Тема: Свойства биссектрисы угла и серединного перпендикуляра»
Р е к о м е н д а ц и и к р е ш е н и ю з а д а ч 2 0 2,
Геометрия глава 8 Тема : «О Геометрия глава 8 Тема : «Окружность». Подготовила Иванова Наталья 9 «а» класс СПб лицей 488 ( учитель Курышова Н.Е. )
ВЕ – биссектриса угла АВС, точка Е удалена от стороны ВС на расстояние, равное 5 см. Найдите расстояние от точки Е до стороны АВ. А В С Е К L Каждая точка.
Четыре замечательные точки треугольника А В С k n p О.
Транксрипт:

Замечательные точки треугольника биссектрисы серединные перпендикуляры

Девиз урока. Три пути ведут к знанию: Путь размышления – это путь самый благородный; Путь подражания – это путь самый легкий; Путь опыта – это путь самый горький.

Свойство биссектрисы неразвёрнутого угла Теорема1. Каждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон. А Х М В С Е К Дано: ВАС, АХ – биссектриса, М є АХ, МЕ АВ, МК АС Доказать: МЕ = МК Теорема 2 ( обратная).Точка, лежащая внутри неразвёрнутого угла и равноудалённая от его сторон, лежит на биссектрисе этого угла. Обобщённая теорема: биссектриса неразвёрнутого угла – множество точек плоскости, равноудалённых от сторон этого угла.

Первая замечательная точка треугольника Теорема. Биссектрисы треугольника пересекаются в одной точке. Е Т А В С О У К М Р

Тема урока: Серединный перпендикуляр

Серединный перпендикуляр к отрезку Теорема 1. К аждая точка серединного перпендикуляра к отрезку равноудалена от его концов. Дано: АВ – отрезок, РК – серединный перпендикуляр, М є РК Доказать: МА = МВ А В Р К М Теорема 2. Точка, равноудалённая от концов отрезка, лежит на серединном перпендикуляре к нему.

Вторая замечательная точка треугольника Теорема. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. А В С k n p О

Вторая замечательная точка треугольника (продолжение) Ещё возможное расположение:

Задача 679(а) А В С Дано: АВС; ВМ = СМ, МD СB, ВD = 5 см; AC=8,5 см; D є АC. Доказать: AD и DC. Решение. Т.к.BМ = ВC, МD CB, по условию, значит, ВD = CD (по теореме о серединном перпендикуляре). D Т.к. BD=5 см, то DC = 5см. AD=AC – DC, значит AD =8.5- 5=3,5(см). Ответ: DC = 5 см, AD =3,5 см. M

Спасибо за урок!