1. Использования свойств функций, входящих в уравнения: а) метод обращения к монотонности функции. б) метод использование свойства ограниченности функции.

Презентация:



Advertisements
Похожие презентации
Презентация к методической разработке для спецкурса: «Обратные тригонометрические функции» (10-11 кл.). САБИНСКИЙ МУНИЦИПАЛЬНЫЙ РАЙОН МОУ «Гимназия» п.г.т.
Advertisements

Преобразование выражений, содержащих обратные тригонометрические функции Урок 23 Классная работа
Тригонометрические уравнения. Т р и г о н о м е т р и ч е с к и е у р а в н е н и я. Работа учеников 11 «А» класса гимназии 5 Научный руководитель, учитель.
Обратные тригонометрические функции Работу выполнила: Ученица 10 А класса МОУ «Гимназии 125» Щепеткова Дарья Рук. Чикрин Е.А.
Уравнения Содержание 1 Понятие уравнения и его свойства 2 Методы решения уравнений Метод разложения на множители Метод введения новой переменной Функционально-графический.
Использование ограниченности функций. Пусть множество М - есть общая часть (пересечение) областей существования функций и и пусть для любого справедливы.
Преобразование выражений, содержащих обратные тригонометрические функции Урок 22 Классная работа
Работа учителя математики Ташкирменской средней школы Лаишевского района РТ Шишковой Х. Д. 1.
/МЕТОД МАЖОРАНТ/ ПОДГОТОВКА К ЕГЭ. Применим для задач в которых множества значений левой и правой частей уравнения или неравенства имеют единственную.
Применение свойств функций к решению уравнений и неравенств Знакомство с методом мажорант.
C1 метод мажорант. Применим для задач в которых множества значений левой и правой частей уравнения или неравенства имеют единственную общую точку, являющуюся.
ПРИМЕНЕНИЕ СВОЙСТВА ОГРАНИЧЕННОСТИ ФУНКЦИИ. Применение свойств функций к решению уравнений и неравенств Работа посвящена одному из нестандартных методов.
Нестандартные приемы решения нестандартных уравнений и неравенств Разработала учитель математики МБОУ «СОШ 38» г.Чебоксары Карасёва Вера Васильевна.
Виды тригонометрических уравнений Виды тригонометрических уравнений Шестакова Марина 10 класс.
Применение свойств функций для решения уравнений Подготовка к ЕГЭ.
Государственное Образовательное Учреждение Лицей 1523 ЮАО г.Москва Лекции по алгебре и началам анализа 10 класс © Хомутова Лариса Юрьевна.
Метод тригонометрических подстановок Презентацию выполнил: Ведин Артём.
УрокУрок в 10 академическом классе Применение свойств обратных тригонометрических функций при решении уравнений и неравенств Учитель Алтухова Ю.В.
Харитоненко Н. В учитель математики МБОУ СОШ 3 с. Александров Гай ЕГЭ – 2012 С 3.
Урок по теме: «Способы решения смешанных уравнений» 11 класс Учитель Зеленина О.Д.
Транксрипт:

1. Использования свойств функций, входящих в уравнения: а) метод обращения к монотонности функции. б) метод использование свойства ограниченности функции. 2. Метод обращения к условию равенства обратных тригонометрических функций: а) одноимённых. б) разноимённых. 3. Метод замены переменной. а) сведение к однородному. б) сведение к алгебраическому с применением различных преобразований. на содержание

1) Использование свойств монотонности и ограниченности обратных тригонометрических функций Решение некоторых уравнений и неравенств, содержащих обратные тригонометрические функции, основываются исключительно на таких свойствах этих функций, как монотонность и ограниченность. При этом используются следующие теоремы. ТЕОРЕМА 1. Если функция y= f(x) монотонна, то уравнение f(x)= c(c= cont) имеем не более одного решения. ТЕОРЕМА 2. Если функция y= f(x) монотонно возрастает, а функция y= g(x) монотонно убывает, то уравнение f(x)= g(x) имеет не более одного решения. ТЕОРЕМА 3. Если f(x)=c = g(x) (c= const), то на множестве Х уравнение f(x)= g(x) равносильно системе f(x)= c, g(x)= c. Методы решения

2arcsin 2x = 3arccos x. Решение. Функция у = 2arcsin 2x является монотонно возрастающей, а функция у = 3arccos x - монотонно убывающей. Число х= 0,5 является, очевидно, корнем данкого уравнения. В силу теоремы 2 этот корень - единственный. Ответ: {0,5}.

Решение. Пусть.Тогда уравнение примет вид. Функции y=arctg z и y=arcsin z являются монотонно возрастающими. Поэтому функция также является монотонно возрастающей. В силу теоремы 1 уравнение имеет не более одного корня. Очевидно, что t = 0 является корнем этого уравнения. Поэтому Ответ: {- 1; 0}.

Решение. Левая часть неравенства представляет собой монотонно убывающую на отрезке функцию Уравнение в силу теоремы 1 имеет не более одного корня. Очевидно, что корень этого уравнения Поэтому решением неравенства является отрезок Ответ:

arcsin (x (x + y)) + arcsin (y (x + y)) = Решение. Поскольку arcsin t при |t | 1, то левая Часть уравнения не превосходит Знак равенства возможен, лишь если каждое слагаемое левой части равно. Таким образом, уравнение равносильно системе: x(x+y)=1 y(x+y)=1 Решение последней системы не представляет труда. Ответ: Методы решения

2а) уравнения и неравенства, левая и правая части которых являются одноимёнными обратными тригонометрическими функциями. Решение уравнений и неравенств, левая и правая части которых представляют собой одноимённые обратные тригонометрические функции различных аргументов, основываются, прежде всего, на таком свойстве этих функций, как монотонность. Напомним, что функции y= arcsin t и y= arctg t монотонно вовозрастают, а функции y= arccos t и y= arcctg t монотонно убывают на своих областях определения. Поэтому справедливы следующие равносильные переходы: Методы решения

Методы решения

2б) Уравнения и неравенств, левая и правая части которых являются разноимёнными обратными тригонометрическими функциями. При решении уравнений и неравенств, левая и правая части которых являются разноименными обратными тригонометрическими функциями, пользуются известными тригонометрическими тождествами. При решении многих уравнений такого рода бывает целесообразно не обсуждать вопрос о равносильности преобразований, а сразу переходить к уравнению-следствию и после его решения делать необходимую проверку. Рассуждения здесь могут быть примерно следующими. Пусть требуется решить уравнение arcsin f(x)= arccos g(x). Предположим, что х 0 –решение этого уравнения. Обозначим arcsin f(x 0 )= arccos g(x 0 ) через Методы решения

Методы решения

3а) Замена переменной. Некоторые уравнения и неравенства, содержащие обратные тригонометрические функции, можно свести к алгебраическим, сделав соответствующую замену переменной. При этом следует помнить о естественных ограничениях на вводимую переменную, связанных с ограниченностью обратных тригонометрических функций. Методы решения

Методы решения

3б) Уравнения и неравенства, сводимые к алгебраическим и тригонометрическим уравнениям и неравенствам. Методы решения

Решите неравенство.

Методы решения