Уравнения с параметрами Что значит решить уравнение с параметрами? Пусть дано равенство с параметрами x; a; f(x;a)=0 и поставлена задача: для каждого действительного.

Презентация:



Advertisements
Похожие презентации
4.12 Повторим квадратичную функцию * Дайте определение квадратичной функции. * Что представляет собой график квадратичной функции? * Как определить направление.
Advertisements

Исследовательская работа по алгебре. Обобщить, систематизировать и расширить знания по теме «Решение неравенств второй степени с одной неизвестной».
Задачи с параметрами.
ОБЛАСТЬ ОПРЕДЕЛЕНИЯ ФУНКЦИЙ Определение: Значения, которые принимает Х в функции f(x), называется областью определения функции и обозначается D(f). f(x),
Решение квадратного неравенства с помощью графика квадратичной функции Методическая разработка учителя Поляковой Е. А.
Корень n-й степени. Квадратный корень Определение. Квадратным корнем из числа а называют число t, квадрат которого равен а. t 2 = a. Числа 8 и -8 – квадратные.
Тренировочные задания второй части. Задания с параметром.
Сложность параметрических задач состоит в том, что с изменением параметров не только меняются коэффициенты, но и происходят качественные изменения уравнения.
Решение квадратного неравенства с помощью графика квадратичной функции А-8 урок 1.
Квадратное неравенство и его решение Методическая разработка учителя Поляковой Е. А.
Учитель:Андреева.И.Г г.ДальнегорскРешение неравенств второй степени с одной переменной Графический способ.
Урок по алгебре и началам анализа в 11 классе Учитель математики Кировской МБОУ: Ткачук Н.П.
Методическая разработка по Алгебре и началам анализа преподавателя математики Симаньковой М.Л. План разработки: Область определения функции. Линейная функция.
Х х -3 1 х у 0 у=ах²+bх+с D0 D>0D>0 а>0 а>0 D=0D=0 а>0 а>0 D>0D>0 а.
Решение неравенств второй степени с одной переменной.
Решение линейных уравнений с параметрами. Пусть дано уравнение 2х+3=х+а. Пусть дано уравнение 2х+3=х+а. Здесь х и а – переменные (неизвестные) величины.
«Решение задач с параметрами.» Презентация к эллективным занятиям в 11 классе.
АЛГЕБРААЛГЕБРАКЛАССКЛАСС Квадратные неравенства Учитель: Светлана Борисовна Сысоева Гимназия 441 Учитель: Светлана Борисовна Сысоева Гимназия 441.
По графику функции найти все значения х, при которых функция больше нуля, меньше нуля, равна нулю ххх у уу 00 0 у=2 х 2 у=-(х+1,5) 2 у=2 х 2 -х+2 -1,5.
Квадратные уравнения с параметрами.. Квадратное уравнение Дискриминант :
Транксрипт:

Уравнения с параметрами Что значит решить уравнение с параметрами? Пусть дано равенство с параметрами x; a; f(x;a)=0 и поставлена задача: для каждого действительного значения a решить это уравнение относительно x, то уравнение f(x;a)=0 называется уравнением с переменной x и параметром a. Решить это уравнение с параметром a – это значит для каждого значения a найти значения x, удовлетворяющее этому уравнению

C4. Найти все значения параметра a, при каждом из которых уравнение имеет единственное решение., t 0, тогда x – 8 =; x = + 8 и уравнение примет вид: Пусть t = -a- 8a +3a+2 a+ t +5a – 2 = 0 1)Если a = 0, то уравнение имеет единственный корень t – 2 = 0; t =2; x = = 12 2)Если a 0 и а > 0 D= 1 – 4a(5a – 2) = 1 – a; a + 1 > a – 1 < 0

1)Ветви вверх 2)Нули функции a – 1 =0 D= = 36 Т.к. t 0, то единственное неотрицательное решение будет, если t 2 =

Ответ: [0; 0,4]; -0.1 Прежде всего при решении уравнения с параметрами надо сделать то, что делается при решении любого уравнения – привести заданное уравнение к более простому виду, то есть разложить на множители, избавиться от модулей, логарифмов и т. д

Как решить задачи с параметром? При решении задач с параметром иногда удобно, а иногда просто необходимо строить графики. Эскиз графиков иногда помогают увидеть «ход решения». Необходимо в первую очередь рассмотреть решение при тех значениях параметра, при которых обращается в ноль коэффициент при старшей степени x, тем самым понизив степень многочлена. C2 Найти все значения параметра a, при которых уравнение имеет 2 различных корня.

Т.к., то сделаем замену переменных и уравнение примет вид: итак, надо найти те значения a, при которых квадратное уравнение имеет один положительный корень t (тогда x = ±t). Рассмотрим функцию График функции – парабола, ветви – вверх.

Иллюстрируем схематически Квадратное уравнение будет иметь один положительный корень, если y(0) < 0 y(0) = 0 + 2(a2 +1)*0 + a y(0) = a, значит a < 0