Разложение многочлена на множители способом группировки !!! Подготовила : Сидорова Диана Три пути ведут к знанию : путь размышления – это путь самый благородный,

Презентация:



Advertisements
Похожие презентации
Разложение многочлена на множители способом группировки 7 класс.
Advertisements

Разложение многочлена на множители с помощью комбинации различных приемов 7 класс.
Разложение многочленов на множители.. Обобщающий урок по теме «Разложение на множители»
Разложение многочленов на множители. Учебная презентация. Обобщающий урок по теме «Разложение на множители» 7класс.
Разложение на множители. Что называют разложением многочлена на множители? a 2 – 5ab = a 2 – 25 = a 2 – 36 = Разложите на множители а(а – 5b) (a – 5)
Разложение многочлена на множители с помощью комбинации различных приемов. Уважение к минувшему – вот черта, отличающая образованность от дикости. А.С.
Учебная презентация 7класс, алгебра При решении уравнений, в вычислениях бывает удобно заменить многочлен произведением нескольких многочленов. Такое.
Для добавления текста щёлкните мышью Разложение многочлена на множители с помощью комбинации различных приемов. Уважение к минувшему – вот черта, отличающая.
Разложение многочлена на множители работа учителя математики МОУ-СОШ 41 Привокзального района г.Тулы Полянцевой Галины Александровны.
Разложение многочлена на множители. Немного теории Разложить многочлен на множители – это значит представить его в виде произведения. Существует несколько.
Применение различных способов для разложения многочлена на множители.
Применение различных способов для разложения на множители. Три пути ведут к знанию: путь размышления – это путь самый благородный, путь подражания – это.
Разложение многочлена на множители с помощью комбинации различных приемов.
ВЫНЕСЕНИЕ ОБЩЕГО МНОЖИТЕЛЯ ЗА СКОБКИ 7 класс. распределительный закон умножения: ac + bc = c(a + b). выделить в двух рассматриваемых компонентах общий.
Разложение многочлена на множители с помощью комбинации различных приемов Три пути ведут к знанию: путь размышления – это путь самый благородный, путь.
Алгебра 7 класс Применение различных способов разложения многочлена на множители.
Метод разложения на множители Вынесение общего множителя за скобки Формулы сокращенного умножения Способ группировки.
«Мало иметь хороший ум, главное – хорошо его применять». Р. Декарт. Разработал Дудкин Владислав, ученик 11 класса.
Что такое разложение многочленов на множители и зачем это нужно? Алгебра 7 класс.
Разложение многочлена на множители с помощью комбинации различных приемов Урок алгебры в 7 классе. МОУ «Побединская СОШ», учитель математики Трубачева.
Транксрипт:

Разложение многочлена на множители способом группировки !!! Подготовила : Сидорова Диана Три пути ведут к знанию : путь размышления – это путь самый благородный, путь подражания – это путь самый легкий и путь опыта – это путь самый горький. Конфуций

Содержание 1) Вынесение общего множителя за скобкиВынесение общего множителя за скобки 2) Способ группировкиСпособ группировки 3)Маленькие исторические факты !!! К содержанию

Вынесение общего множителя за скобки Вынесение общего множителя за скобки Из каждого слагаемого, входящего в многочлен, выносится некоторый одночлен, входящий в качестве множителя во все слагаемые. Таким общим множителем может быть не только одночлен, но и многочлен.

Алгоритм нахождения общего множителя нескольких одночленов Найти наибольший общий делитель коэффициентов всех одночленов, входящих в многочлен, - он и будет общим числовым множителем (разумеется, это относится только к случаю целочисленных коэффициентов). Найти переменные, которые входят в каждый член многочлена, и выбрать для каждой из них наименьший (из имеющихся) показатель степени. Произведение коэффициента, найденного на первом шаге, является общим множителем, который целесообразно вынести за скобки.

Пример Разложить на множители: x 4 y 3 - 2x 3 y 2 + 5x 2. Воспользуемся сформулированным алгоритмом. 1) Наибольший общий делитель коэффициентов –1, -2 и 5 равен 1. 1) Переменная x входит во все члены многочлена с показателями соответственно 4, 3, 2; следовательно, можно вынести за скобки x 2. 2) Переменная y входит не во все члены многочлена ; значит, ее нельзя вынести за скобки. Вывод : за скобки можно вынести x 2. Правда, в данном случае целесообразнее вынести -x 2. Получим : -x 4 y 3 -2x 3 y 2 +5x 2 =- x 2 (x 2 y 3 +2xy 2 -5). К содержанию

Способ группировки Бывает, что члены многочлена не имеют общего множителя, но после заключения нескольких членов в скобки (на основе переместительного и сочетательного законов сложения) удается выделить общий множитель, являющийся многочленом.

1. Сгруппировать его члены так, чтобы слагаемые в каждой группе имели общий множитель 2. Вынести в каждой группе общий множитель в виде одночлена за скобки 3. Вынести в каждой группе общий множитель (в виде многочлена) за скобки. Алгоритм разложения многочлена на множители способом группировки:

Для уяснения сути способа группировки рассмотрим следующий пример: разложить на множители многочлен Xy–6+3x–2y

xy-6+3x-2y= =(xy-6)+(3x-2y). Пример не корректный !!! Попробуйте применить другой способ !!! Первый способ группировки:

Второй способ группировки xy-6+3x-2y=(xy+3x)+(-6-2y)= =x(y+3)-2(y+3)= =(y+3)(x-2).

xy-6+3y-2y=(xy-2y)+(-6+3x)= =y(x-2)+3(x-2)= =(x-2)(y+3). Третий способ группировки:

Разложение многочлена на множители с помощью комбинации различных приемов В математике не так часто бывает, чтобы при решении примера применялся только один прием, чаще встречаются комбинированные примеры, где сначала используется один прием, затем другой и т.д. Чтобы успешно решать такие примеры, мало знать сами приемы, надо еще уметь выработать план их последовательного применения. Иными словами, здесь нужны не только знания, но и опыт. Вот такие комбинированные примеры мы и рассмотрим.

xy-6+3y-2y=(x-2)(y+3). К содержанию Вы уже поняли, что не всегда получается группировка с первого раза,если группировка не получилась попробуйте пойти иначе и решите пример другим способом _)))

А давайте Повторим !!!!

Определение представление многочлена в виде произведения двух или нескольких многочленов !!! Разложение многочлена на множители - это

Завершите утверждение. Представление многочлена в виде произведения одночлена и многочлена называется

2. Завершить утверждение. Представление многочлена в виде произведения одночлена и многочлена называется вынесением общего множителя за скобки.

3. Восстановите порядок выполнения действий при разложении многочлена на множители способом группировки. Чтобы разложить многочлен на множители способом группировки, нужно вынести в каждой группе общий множитель (в виде многочлена) за скобки сгруппировать его члены так, чтобы слагаемые в каждой группе имели общий множитель вынести в каждой группе общий множитель в виде одночлена за скобки

3. Восстановите порядок выполнения действий при разложении многочлена на множители способом группировки. Чтобы разложить многочлен на множители способом группировки, нужно вынести в каждой группе общий множитель (в виде многочлена) за скобки сгруппировать его члены так, чтобы слагаемые в каждой группе имели общий множитель вынести в каждой группе общий множитель в виде одночлена за скобки

ИСТОРИЧЕСКИЕ ФАКТЫ !!! Великие математики и Ученые !!!

Известный математик по имени Эйлер ( гг.) родился в Швейцарии. В 1727 г. двадцатилетним юношей он был приглашен в Петербургскую Академию наук. Этот математик был соратником Ломоносова. В Петербурге он попадает в круг выдающихся ученых математиков, физиков, астрономов, получает широкую возможность для создания и издания своих трудов (их у него было более 800, и заняли они 72 тома). Среди его работ - первые учебники по решению уравнений. Старшеклассники учатся по учебникам, прообразы которых создал этот ученый. Его считают великим учителем математики. Последние в научном мире он работал слепым, но продолжал работать, диктовал труды своим ученикам. Однако в научном мире он больше известен как физик, который построил точную теорию движения луны с учетом притяжения не только Земли, но и Солнца.

Франсуа Виет (замечательный французский математик) Франсуа Виет замечательный французский математик, положивший начало алгебре как науке о преобразовании выражений, о решении уравнений в общем виде, создатель буквенного исчисления. Виет первым стал обозначать буквами не только неизвестные, но и данные величины. Тем самым ему удалось внедрить в науку великую мысль о возможности выполнять алгебраические преобразования над символами, т. е. ввести понятие математической формулы. Этим он внес решающий вклад в создание буквенной алгебры, чем завершил развитие математики эпохи Возрождения и подготовил почву для появления результатов Ферма, Декарта, Ньютона Франсуа Виет родился в 1540 году на юге Франции в небольшом городке Фантене-ле-Конт, что находится в 60 км от Ла-Рошели, бывшей в то время оплотом французских протестантов-гугенотов. Большую часть жизни он прожил рядом с виднейшими руководителями этого движения, хотя сам оставался католиком. По-видимому, религиозные разногласия ученого не волновали.