Математика в архитектуре Выполнила Шило Анна 7 «Б» класс.

Презентация:



Advertisements
Похожие презентации
1. «Золотое сечение» в математике 2. «Золотое сечение» в скульптуре 3. «Золотое сечение» в архитектуре 4. «Золотое сечение» в живописи 5. «Золотое сечение»
Advertisements

Тема: Золотое сечение в архитектуре Выполнила: уч-ца 9 «А» класса школа 11 Байрамкулова Амина.
1. «Золотое сечение» в математике 2. «Золотое сечение» в скульптуре 3. «Золотое сечение» в архитектуре 4. «Золотое сечение» в живописи 5. «Золотое сечение»
Проект «Золотое сечение» Выполнила Глущенко Наталья Сергеевна учитель математики МОУ-СОШ с. Карпенка.
З О Л О Т О Е С Е Ч Е Н И Е. При изучении геометрии в школе можно установить взаимосвязи между геометрическими понятиями и окружающим миром. При изучении.
Исследовательская работа по математике Золотое сечение Выполнил: ученик 6 класса 3 Варсеев Дмитрий Брянский городской лицей 1 имени А.С.Пушкина.
Золотое сечение Урок математики, 6 класс Тема «Отношения и пропорции»
Как измерить красоту и гармонию? «В геометрии существует два сокровища: первое – теорема Пифагора, второе – золотое сечение. Первое можно сравнить с мерой.
Муниципальное бюджетное образовательное учреждение средняя общеобразовательная школа с.Каркаусь Кукморского муниципального района РТ Учительница математики.
Золотое сечение Выполнила: ученица 6в класса МОУ СОШ 26 г. Благовещенска Гончарова Светлана.
МОУ «Шарапово – Охотская средняя общеобразовательная школа» Проектная работа по теме: Выполнили ученики 6 класса: Симарова Анастасия Изгаршев Егор Изгаршев.
УРОК–ПРАКТИКУМ ПО ТЕМЕ «ЗОЛОТОЕ СЕЧЕНИЕ» Макарова Наталья Николаевна.
Пропорции в природе, искусстве и архитектуре Пропорции в природе, искусстве и архитектуре.
Проект выполнили: ученик 11 А класса Коновалов Даниил, ученица 6 В класса Коновалова Дарья Руководитель: Шершнева Е.Г., учитель математики.
Исследовательская работа по математике Ученицы 10 класса Моториной Валерии.
Принцип золотого сечения: Высшее проявление структурного и функционального совершенства целого и его частей в науке, технике, природе, искусстве и архитектуре.
Золотое сечение Гармония форм природы и искусства.
Исследовательская экспедиция. Сегодня на уроке мы с вами: повторим понятия, связанные с пропорцией, отношением; познакомимся с «золотым сечением», «золотым»
Золотое сечение Золотое сечение Приложение к реферату Старокожева Дмитрия 10 «А» класс.
РАБОТУ ВЫПОЛНИЛА УЧЕНИЦА 6 КЛАССА «В» ГБОУ ГИМНАЗИИ 1257 СОКОЛОВА КСЕНИЯ НАУЧНЫЙ РУКОВОДИТЕЛЬ ЗАЕСЕНОК ВЕРА ПАВЛОВНА.
Транксрипт:

Математика в архитектуре Выполнила Шило Анна 7 «Б» класс.

Введение Сегодня, я хочу рассказать вам о золотом сечении. Тему золотого сечения я взяла не случайно. Однажды на уроке математики в 6 классе, наша учительница посвятила урок «божественной пропорции». На нём она наглядно показала её. Золотое сечение использовали в разных сферах жизни. Мы нашли её в живых существах, в архитектуре, в живописи… После этого урока мне захотелось побольше узнать об этом понятии – золотом сечении. Я решила изучить вопрос математики «Золотое сечение», а потом ещё мне захотелось узнать - где золотое сечение встречается у нас в архитектуре города Хабаровска. Мною был составлен план работы: 1) Знакомство с терминомАпрель 2011 Ознакомление с литературой и интернет ресурсами посвященными этой теме 2) Проведение исследованияЛето 2011 Изучение архитектуры Хабаровска 3) Собирание информацииСентябрь - Октябрь 2011Работа в Microsoft Word 4) Оформление презентацииНоябрь 2011Работа в Power Point 5)Отправление работыЯнварь 2012 Отправление работы на конкурс 6) Выступление с докладомМарт 2012Выступление на школьной научной конференции

Пожалуй, самым трудным и вместе с тем обязательным в архитектурном творчестве является простота. А. В. Щусев. «Формул красоты» уже известно немало. С давних пор в своих творениях люди предпочитают правильные геометрические формы – квадрат, круг, равнобедренный треугольник, пирамиду. В пропорциях сооружений отдаётся предпочтение целочисленным соотношениям. Из многих пропорций, которыми издавна пользовался человек при создании гармонических произведения, существует одна, единственная и неповторимая, обладающая уникальными свойствами. Эту пропорцию называли по разному – «золотой», «божественной», «золотым сечением», «золотым числом», «золотой серединой».

Геометрия владеет двумя великими сокровищами: одно из них – теорема Пифагора, другое – деление отрезка в крайнем и среднем отношении. Иоганн Кеплер. С давних пор человек стремится окружать себя красивыми вещами. Уже предметы обихода жителей древности, которые, казалось бы, преследовали чисто утилитарную цель – служить хранилищем воды, оружием на охоте и т.д., демонстрируют стремление человека к красоте. Уже в Древней Греции изучение сущности красоты, прекрасного, сформировалась в самостоятельную ветвь науки – эстетику. Тогда же родилось представление о том, что основой прекрасного является гармония. Красота скульптуры, храма, картины…Что между ними общего? Разве можно сравнивать красоту храма с красотой ноктюрна? Оказывается можно, если будут найдены единые критерии прекрасного, если будут открыты общие формулы красоты…

Что же такое «золотая пропорция»? Золотое сечение – это деление целого (точнее суммы) на две неравные части так, чтобы большая часть относилась к меньшей, как целое к большей. Вводя обозначения: a – это большее или последнее число, x – среднее число (связь), y – меньшее (первое) число, в результате мы имеем: x : y = a : x, или y : x = x : a, или ay=x 2. Золотое сечение обозначается буквой Ф и равно 1,618033… «Золотая пропорция» - это понятие математическое, и её изучение – задача науки. Но она же является критерием гармонии и красоты, а это уже категория искусства.

Использование золотой пропорции в старинной архитектуре. Знаменитый русский архитектор М.Ф.Казаков широко использовал в своем творчестве золотое сечение. Его талант был многогранным, но в большей степени он проявился в многочисленных проектах жилых домов и усадеб. Например, золотое сечение можно встретить в архитектуре здания бывшего сената в Кремле, Дворца в Петровском Алабине и Голицынской больницы в Москве, которая в настоящее время называется Первой Клинической больницей имени Н.И.Пирогова. Еще один архитектурный шедевр Москвы - дом Пашкова - является одним из наиболее совершенных произведений архитектора В.Баженова. Наружный вид дома сохранился почти без изменений до наших дней, несмотря на то, что он сильно обгорел в 1812 году. Многие высказывания зодчего заслуживают внимания.

Так же в архитектуре широко использовались различные виды симметрии. «Симметрия» по-гречески означает «соразмерность, пропорциональность, одинаковость в расположении частей». Современные архитекторы всех стран продолжают использовать в своей работе опыт старых мастеров: проверенные временем золотую пропорцию и симметрию.

Открытый плавательный бассейн СКА ДВО В Хабаровске много зданий, при создании которых использовались эти правила. Для подтверждения этого мною было изучено одно из самых интереснейших и необычных сооружений города – открытый плавательный бассейн СКА ДВО. Это один из немногих открытых бассейнов в России и единственный на Дальнем Востоке, Урале и в Сибири. Он был открыт в 1960 г. Принцип симметрии просматривается, как во всём сооружении в целом, так и в отдельных его частях.

Использование золотой пропорции. Золотая пропорция так же использовалась в этом сооружении. При детальном рассмотрении всего здания в целом и отдельных его частей мною было обнаружено множество примеров золотого сечения. Вспомним определение золотого сечения: золотое сечение – это деление целого (точнее суммы) на две неравные части так, чтобы большая часть относилась к меньшей, как целое к большей. Возьмём целое за с, большее за а, меньшее за b.

СКА ДВО Если целым посчитать длину фасада здания, большим – длину от левой части до конца центральной, а меньшим правую часть, то у нас получится, что c : а 1.62, а а : b 1.63, т.е. отношение целого к большему равно отношению большего к меньшему и равно Это и есть золотое сечение, которое обычно обозначается буквой Ф («фи»). Точно так же можно найти золотое сечение в высоте центральной части здания. И в этом случае c : а= а : b= Ещё довольно интересно, что длина самого бассейна 50 метров, а ширина 25 метров, т.е. сам бассейн представляет собой прямоугольник с отношением сторон 2:1. Исходя из теоремы Пифагора диагональ бассейна (гипотенуза прямоугольного треугольника) равна 55,9 м. Теперь подставим это в формулу (а+с) : b (одна из формул золотого сечения, применимая для прямоугольного треугольника). Получаем: ( ) : 50=80.9 : 50= a b c

Как видно, это опять число Ф, а следовательно золотая пропорция присутствует и в этой части бассейна. Такой же прямоугольник (2:1) наблюдается и в контуре окон здания. И опять применив формулу золотого сечения, с использованием двух сторон и диагонали, мы получаем волшебное число Ф.

Вывод Из всего этого мы можем сделать вывод, что золотое сечение присутствует во многих элементах этого сооружения. Открытый бассейн – это спортивное сооружение, но оно поражает своей красотой, симметричностью, гармонией и напоминает и своими колоннами и статуями древнегреческий храм.

Математика и архитектура Целью моей работы было доказательство того, что математика и архитектура с древнейших времён были неразделимы и шагали через века до нашего времени нога в ногу. Примерами этого являются широко используемые в архитектуре математические понятия, такие как симметрия, золотое сечение и теорема Пифагора. Математика – царица всех наук, и она владеет двумя великими сокровищами: одно из них – теорема Пифагора, другое – деление отрезка в крайнем и среднем отношении.