ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Линейным углом двугранного угла называется угол, образованный лучами с вершиной на граничной прямой, стороны которого лежат на гранях двугранного угла и перпендикулярны граничной прямой. Величиной двугранного угла называется величина его линейного угла. Углом между двумя пересекающимися плоскостями называется наименьший из двугранных углов, образованных этими плоскостями.
В кубе A…D 1 найдите угол между плоскостями ABC и CDD 1. Ответ: 90 o.
В кубе A…D 1 найдите угол между плоскостями ABC и CDA 1. Ответ: 45 o.
В кубе A…D 1 найдите угол между плоскостями ABC и BDD 1. Ответ: 90 o.
В кубе A…D 1 найдите угол между плоскостями ABC и BC 1 D. Решение: Обозначим O середину BD. Искомым линейным углом будет угол COC 1. В прямоугольном треугольнике COC 1 имеем CC 1 = 1; CO = Следовательно,
В кубе A…D 1 найдите угол между плоскостями ABC и AB 1 D 1. Решение: Плоскость AB 1 D 1 параллельна плоскости BC 1 D. Из предыдущей задачи следует, что
В кубе A…D 1 найдите угол между плоскостями ACC 1 и BDD 1. Ответ: 90 o.
В кубе A…D 1 найдите угол между плоскостями ABC 1 и BB 1 D 1. Решение: Заметим, что плоскость равностороннего треугольника ACB 1 перпендикулярна диагонали BD 1, которая проходит через центр O этого треугольника. Искомым линейным углом будет угол B 1 OE, который равен 60 o. Ответ: 60 o.
В кубе A…D 1 найдите угол между плоскостями BC 1 D 1 и BA 1 D. Ответ: 90 o. Решение: Заметим, что плоскость равностороннего треугольника BDA 1 перпендикулярна диагонали AC 1, которая проходит через центр этого треугольника. Следовательно, данные плоскости перпендикулярны. Искомый угол равен 90 o.
В кубе A…D 1 найдите угол между плоскостями BC 1 D и BA 1 D. Решение: Пусть O – середина BD. Искомый угол равен углу A 1 OC 1. Имеем Используя теорему косинусов, получим Ответ: