Классификация и свойства правильных многогранников

Презентация:



Advertisements
Похожие презентации
ГЕОМЕТРИЧЕСКИЕ ТЕЛА. Классификация ГЕОМЕТРИЧЕСКИЕ ТЕЛА МНОГОГРАННИКИ ТЕЛА ВРАЩЕНИЯ ПРИЗМА ПИРАМИДА ПРАВИЛЬНЫЕ МНОГОГРАННИКИ ЦИЛИНДР КОНУС ШАР.
Advertisements

Трёхгранные и многогранные углы: Трёхгранным углом называется фигура образованная тремя плоскостями, ограни- ченными тремя лучами, исходящими из одной.
Правильные многогранники Работа учеников 10 б Иванова Николая и Митченко Егора.
Правильные многогранники. Понятие правильного многогранника Выпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники.
Многогранник называется правильным, если все его грани – равные между собой правильные многоугольники, из каждой его вершины выходит одинаковое число ребер.
Многогранники Выполнила: Порохина Людмила Алексеевна Учитель математики МОУ «Петровская средняя общеобразовательная школа»
М НОГОГРАННИКИ. О ПРЕДЕЛЕНИЕ МНОГОГРАННИКА : Многогранник – это поверхность составленная из многоугольников, ограничивающая некоторое геометрическое тело.
Правильные многогранники Выполнила ученица 10-го класса Бурданова Мария.
Обирина Людмила Ивановна Преподаватель КГБОУ СПО « НПК » Геометрические фигуры в пространстве Норильск, 2015.
Многогранник называется правильным, если все его грани – равные между собой правильные многоугольники, из каждой его вершины выходит одинаковое число.
Понятие правильного многогранника Босая Владлена 10 «А»
Ховаева Екатерина, 10 класс. Правильный многогранник, или Платоново тело это выпуклый многогранник с максимально возможной симметрией. Многогранник называется.
О пределение п равильного м ногогранника Многогранник н азывается п равильным, е сли : о н в ыпуклый, в се е го г рани - р авные п равильные многоугольники,
Многогранники, пирамида и призма Бийск 2008 г.. Содержание 1. Что такое многогранник ? Что такое многогранник ? Что такое многогранник ? 2. Виды многогранников.
Многогранник- это тело, поверхность которого состоит из конечного числа плоских многоугольников. Многогранник- это тело, поверхность которого состоит.
Моделирование правильных многогранников 10 классВыпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники и в.
МОУ «Цветочинская СОШ» Выполнили: Нусс Татьяна Скляр Таисия Проект по геометрии.
Правильные многогранники. 1. Выпуклый 2. Все грани – равные правильные многоугольники 3. В каждой вершине сходится одно и то же число ребер Правильный.
Правильные многогранники 1) Симметрия в пространстве. 1) Симметрия в пространстве. 2) Понятие правильного многогранника. 2) Понятие правильного многогранника.
Практическая работа по геометрии МНОГОГРАННИКИ Ученика 11-Б класса Киселева Никиты.
Транксрипт:

Классификация и свойства правильных многогранников Теорема Эйлера Автор работы :Кононов Саша 10в Зинченко Вадим 10б

Свойства многогранников Многогранники представляют собой простейшие тела в пространстве. Многогранные формы мы видим ежедневно: спичичный коробок, книга, комната, многоэтажный дом, граненый карандаш, гайка. С чисто геометрической точки зрения многогранник - это часть пространства, ограниченная плоскими многоугольниками - гранями. Грани образуют так называемую многогранную поверхность. На многогранную поверхность обычно накладывают следующие ограничения:1) каждое ребро должно являться общей стороной двух, и только двух, граней, называемых смежными; 2) каждые две грани можно соединить цепочкой последовательно смежных граней; 3) для каждой вершины углы прилежащих к этой вершине граней должны ограничивать некоторый многогранный угол. Многогранник называют выпуклым, если он лежит по одну сторону от плоскости любой из его граней. Это условие эквивалентно каждому из двух других: 1) отрезок с концами в любых двух точках многогранника целиком лежит в многограннике, 2) многогранник можно представить как пересечение нескольких полупространств. Самые простые многогранники - четырехвершинники или четырехгранники - всегда ограничены четырьмя треугольными гранями. Но уже пятигранники могут быть совершенно разных типов. Как и многоугольники, многогранники характеризуются также по степени их симметричности. Среди пирамид выделяют правильные: в основании у них лежит правильный многоугольник, а высота- перпендикуляр, проведенный из вершины к плоскости основания, - попадает в центр основания пирамиды.

Исследуем возможность существования правильных многогранников. При этом будем опираться на свойство плоских углов многогранного угла. Теорема: Сумма плоских углов выпуклого многогранника угла меньше 4d (360 0 ). а) Пусть грани правильного многогранника – правильные треугольники. L = Если при вершине многогранного угла n плоских углов, то 60 0 n < 360 0, n < 6, n = 3, 4, 5, т.е. существует 3 вида правильных многогранников с треугольными гранями. Это тетраэдр, октаэдр, икосаэдр.

б) Пусть грани правильного многогранника – квадраты. L = 900. Для n – гранных углов n 900< 3600, n 4, n = 3, т.е. квадратные грани может иметь лишь правильный многогранник с трехгранными углами – куб. в) Пусть грани - правильные пятиугольники L = (5 – 2) : 5 = 36 0 *3 = 108 0, n*108 0

Доказал это соотношение один из величайших математиков Леонард Эйлер (1707 – 1783 гг.), поэтому формула названа его именем. Этот гениальный ученый, родившийся в Швейцарии, почти всю жизнь прожил в России. Современная теория многогранников берет свое начало с его работ, Все эти примеры являются выводом теоремы Эйлера

Теорема Эйлера. Пусть В - число вершин выпуклого многогранника, Р - число его рёбер и Г - число граней. Тогда верно равенство В-Р+Г=2. Число X =В-Р+Г называется эйлеровой характеристикой многогранника. Согласно теореме Эйлера, для выпуклого многогранника эта характеристика равна 2. То что эйлерова характеристика равна 2 для некоторых знакомых нам многогранников, видно из таблицы. Многогранник Число вершин Числ о ребе р Число гране й X Тетраэдр4642 Куб81262 Октаэдр61282 Додекаэдр Икосаэдр n-угольная пирамидаn+12nn+12 n-угольная призма2n3nn+22

ГЕКСАЭДР(КУБ) Куб составлен из шести квадратов. Каждая его вершина является вершиной трех квадратов. Сумма плоских углов при каждой вершине равна 270 градусов. Таким образом, куб имеет 6 граней, 8 вершин и 12 ребер.

ДОДЕКАЭДР Додекаэдр составлен из двенадцати равносторонних пятиугольников. Каждая его вершина является вершиной трех пятиугольников. Сумма плоских углов при каждой вершине равна 324 градусов. Таким образом, додекаэдр имеет 12 граней, 20 вершин и 30 ребер

ТЕТРАЭДР Тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Сумма плоских углов каждой при вершине равна 180 градусов. Таким образом, тетраэдр имеет 4 грани, 4 вершины и 6 ребер.

ОКТАЭДР Октаэдр составлен из восьми равносторонних треугольников. Каждая его вершина является вершиной четырех треугольников. Сумма плоских углов при каждой вершине равна 240 градусов. Таким образом, октаэдр имеет 8 граней, 6 вершин и 12 ребер.

ИКОСАЭДР Икосаэдр составлен из двадцати равносторонних треугольников. Каждая его вершина является вершиной пяти треугольников. Сумма плоских углов при каждой вершине равна 300 градусов. Таким образом икосаэдр имеет 20 граней, 12 вершин и 30 ребер. Икосаэдр составлен из двадцати равносторонних треугольников. Каждая его вершина является вершиной пяти треугольников. Сумма плоских углов при каждой вершине равна 300 градусов. Таким образом икосаэдр имеет 20 граней, 12 вершин и 30 ребер.