Математика в архитектуре и живописи Выполнил ученик 10мб класса Лицея 2 г.Перми Окунев Александр Руководитель Кузьменкова Н.Я. «Всё прекрасно благодаря.

Презентация:



Advertisements
Похожие презентации
МАТЕМАТИКА В ЖИВОПИСИ И АРХИТЕКТУРЕ Математика в архитектуре и живописи «Всё прекрасно благодаря числу».Пифагор «Умеренность и соразмерность всюду становятся.
Advertisements

III Международный конкурс «Математика и проектирование» Номинация проекта «Математика и искусство» Тема проекта «Когда красота привлекает, а исследование.
Какое значение имеет золотое сечение в искусстве, архитектуре, скульптуре…? Какое значение имеет золотое сечение в искусстве, архитектуре, скульптуре…?
Золотое сечение. Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части,
Принцип золотого сечения: Высшее проявление структурного и функционального совершенства целого и его частей в науке, технике, природе, искусстве и архитектуре.
Золотое сечение «…Геометрия владеет двумя сокровищами – теоремой Пифагора и золотым сечением, и если первое из них можно сравнить с мерой золота, то второе.
ЗОЛОТОЕ СЕЧЕНИЕ или «божественная пропорция» Книга природы написана языком математики. Галилео Галилей.
Исследовательская работа по математике Золотое сечение Выполнил: ученик 6 класса 3 Варсеев Дмитрий Брянский городской лицей 1 имени А.С.Пушкина.
1. «Золотое сечение» в математике 2. «Золотое сечение» в скульптуре 3. «Золотое сечение» в архитектуре 4. «Золотое сечение» в живописи 5. «Золотое сечение»
Автор проекта: учащаяся 12 группы Сикорская Ирина Руководитель: Маликова Юлия Викторовна Лицей РГСУ 2010 г.
1. «Золотое сечение» в математике 2. «Золотое сечение» в скульптуре 3. «Золотое сечение» в архитектуре 4. «Золотое сечение» в живописи 5. «Золотое сечение»
Путешествие по «золотому сечению» Добро пожаловать на урок! Составитель: Дорофеев Денис Николаевич.
Проект «Золотое сечение» Выполнила Глущенко Наталья Сергеевна учитель математики МОУ-СОШ с. Карпенка.
Что объединяет эти произведения искусства? Аполлон Бельведерский Зевс Олимпийский Парфенос.
УРОК–ПРАКТИКУМ ПО ТЕМЕ «ЗОЛОТОЕ СЕЧЕНИЕ» Макарова Наталья Николаевна.
Золотое сечение Гармония форм природы и искусства.
Золотое сечение. Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части,
Исследовательская работа по математике Ученицы 10 класса Моториной Валерии.
Золотое сечение Выполнила: ученица 6в класса МОУ СОШ 26 г. Благовещенска Гончарова Светлана.
МОУ «Шарапово – Охотская средняя общеобразовательная школа» Проектная работа по теме: Выполнили ученики 6 класса: Симарова Анастасия Изгаршев Егор Изгаршев.
Транксрипт:

Математика в архитектуре и живописи Выполнил ученик 10мб класса Лицея 2 г.Перми Окунев Александр Руководитель Кузьменкова Н.Я. «Всё прекрасно благодаря числу».Пифагор «Умеренность и соразмерность всюду становятся красотой и добродетелью».Платон Математика играет в архитектуре и живописи очень важную роль, а именно: архитекторы и художники используют математические законы гармонии, симметрию и пропорции, в основном золотое сечение, при создании своих работ. Математика играет в архитектуре и живописи очень важную роль, а именно: архитекторы и художники используют математические законы гармонии, симметрию и пропорции, в основном золотое сечение, при создании своих работ.

Золотое сечение Деление отрезка в золотом сечении означает, что длина меньшей части относится к длине большей части так же, как длина большей части относится к длине всего отрезка. Деление отрезка в золотом сечении означает, что длина меньшей части относится к длине большей части так же, как длина большей части относится к длине всего отрезка. ABC φ0,62 Ф=1/φ 1,618 Ряд золотого сечения является геометрической прогрессией Свойство ряда золотого сечения Золотые фигуры Золотыми фигурами называются такие фигуры, стороны которых находятся в золотом соотношении M NP Q Золотой прямоугольник MN:NP=φ A BC Золотой треугольник BC:AB=φ

Архитектура «Архитектурные пропорции – это математика зодчества. А математика – это универсальный язык науки, поэтому мы можем сказать, что пропорции – это универсальный язык науки, язык всеобъемлющий и всесильный, как всесильна и всеобъемлюща сама математика» А.В. Волошинов «Всё вокруг – геометрия. Дух геометрического и математического порядка станет властителем архитектурных судеб» Ле Корбюзье

Парфенон Парфенон – одно из самых великих сооружений мира. Храм был возведён при Перикле в Vв. до н.э. Иктином и Калликратом. Парфенон – одно из самых великих сооружений мира. Храм был возведён при Перикле в Vв. до н.э. Иктином и Калликратом. Он был построен в дорическом ордере. Снаружи его украсили сценами жестоких битв. На западном фронтоне Парфенона был изображён миф о споре Афины и Посейдона. На главном (восточном) – рождение Афины Он был построен в дорическом ордере. Снаружи его украсили сценами жестоких битв. На западном фронтоне Парфенона был изображён миф о споре Афины и Посейдона. На главном (восточном) – рождение Афины

Пропорции Парфенона Современные архитекторы утверждают, что в основе Парфенона лежит золотое сечение. Современные архитекторы утверждают, что в основе Парфенона лежит золотое сечение. Жолтовский писал, что высоты поддерживающих (ВС) и поддерживаемых (АC) частей фасада соотносятся в золотой пропорции. AC:BC=φ Хэмбидж разбил фасад Парфенона на квадраты и прямоугольники, стороны которых относятся, как 1 к 5. Хэмбидж разбил фасад Парфенона на квадраты и прямоугольники, стороны которых относятся, как 1 к 5. Легко видеть, что главные вертикальные размеры храма соотносятся в золотой пропорции (см. рисунок) Легко видеть, что главные вертикальные размеры храма соотносятся в золотой пропорции (см. рисунок) Золотая пропорция на фасаде Парфенона

Линейчатые поверхности Линейчатыми называются поверхности, образованные движением прямой в пространстве. Линейчатыми называются поверхности, образованные движением прямой в пространстве. К ним относятся конус и цилиндр. Цилиндрические своды сооружали в Древнем Риме. Позже математики открыли ещё 2 вида линейчатых поверхностей: гиперболический параболоид и однополостный гиперболоид. Они образованы двумя семействами прямых в пространстве Цилиндрические своды сооружали в Древнем Риме. Позже математики открыли ещё 2 вида линейчатых поверхностей: гиперболический параболоид и однополостный гиперболоид. Они образованы двумя семействами прямых в пространстве

Однополостный гиперболоид На основе однополостных гиперболоидов была построена Шаболовская радиобашня Гиперболический параболоид Возможности гиперболических параболоидов открыл испанский архитектор Феликс Кандела. Он показал их свойства на самых разных сооружениях – от промышленных зданий до ресторанов и клубов. Возможности гиперболических параболоидов открыл испанский архитектор Феликс Кандела. Он показал их свойства на самых разных сооружениях – от промышленных зданий до ресторанов и клубов. На фото изображён вечерний зал в Акапулько. На фото изображён вечерний зал в Акапулько.

Собор Парижской Богоматери Собор Парижской богоматери – один из величайших памятников архитектуры ранней готики. Собор Парижской богоматери – один из величайших памятников архитектуры ранней готики. Огюст Шуази показал, что в основе пропорций фасада собора лежит квадрат, а высота башен равна радиусу окружности, вписанной в этот квадрат Огюст Шуази показал, что в основе пропорций фасада собора лежит квадрат, а высота башен равна радиусу окружности, вписанной в этот квадрат Также на главном фасаде присутствует золотое сечение. Также на главном фасаде присутствует золотое сечение.

Храм Василия Блаженного Церковь Покрова на Нерли Несмотря на простоту форм и лаконичность украшений, храм Покрова на Нерли считается одной из самых красивых церквей России. Несмотря на простоту форм и лаконичность украшений, храм Покрова на Нерли считается одной из самых красивых церквей России. В основе храма лежит золотое сечение Ряд золотого сечения:

Золотое сечение на картине Боттичелли «Рождение Венеры» Отношение длины картины к её ширине равно φ. Расстояние от левого края картины до головы богини ветра и расстояние от её головы до правого края картины находятся в золотом соотношении, как и расстояние от левого края до руки нимфы и от руки до правого края. Отношение длины картины к её ширине равно φ. Расстояние от левого края картины до головы богини ветра и расстояние от её головы до правого края картины находятся в золотом соотношении, как и расстояние от левого края до руки нимфы и от руки до правого края. На рисунке показано, что колени делят тело, пупок – туловище, брови – лицо в золотом сечении.

Золотое сечение на Моне Лизе Построение на золотых треугольнках Построение на золотых прямоугольниках

Витрувианский человек Дэн Браун в книге «Код да Винчи» писал, что картина Леонардо да Винчи построена на золотом сечении. Дэн Браун в книге «Код да Винчи» писал, что картина Леонардо да Винчи построена на золотом сечении. A B C DEF AC:AB=Ф DF:DE=Ф

Математическая живопись Наиболее распространенными темами в математической живописи являются: фракталы, тесселляции, невозможные фигуры и искажённые перспективы. Наиболее распространенными темами в математической живописи являются: фракталы, тесселляции, невозможные фигуры и искажённые перспективы. Иштван Орос «Перекрёстки» Невозможные фигуры

Искажённые перспективы Дик Термес «Клетка для человека»

Фракталы Роберт Фатауэр «Композиция кругов»

Тесселляции Роберт Фатауэр "Фрактальные рыбы " Если присмотреться, то можно увидеть, что волна является фрактальной тесселяцией, которая состоит из рыб разных размеров