РН среды и здоровье человека. Автор – Саутенко Александр Руководитель – Ширшина Н.В.

Презентация:



Advertisements
Похожие презентации
Минеральные соли и их биологическая роль.. Минеральные соли и кислоты находятся в клетках или в виде растворов, или в виде твердых отложений. При образовании.
Advertisements

Основные механизмы нарушения регуляции кислотно щелочного равновесия в организме Подготовили: Майструк К. Байтукина Н.
Лекция 6 Буферные растворы Буферными растворами (буферами) называют растворы, в которых концентрация ионов водорода или выражающий ее водородный показатель.
БУФЕРНЫЕ СИСТЕМЫ Буферными системами (буферами) называют растворы, обладающие свойством достаточно стойко сохранять постоянство концентрации ионов водорода.
Учение о растворах. Буферные растворы. первой лекции является решение вопроса о постоянстве среды в организме, какие факторы влияют на кислотно-основное.
Презентация по химии по теме: «Гидролиз» Подготовила ученица 11 в класса Бульбаш Алена.
МОУ «Гимназия 2» г. Кимры Тверской области урок химии 11 класс Гидролиз солей урок химии (11 класс) частный случай реакции ионного обмена одно из химических.
Гидролиз солей Курсовая работа учителя химии Гимназии 144 Калининского р-на С-Петербурга.
Учитель химии и биологии высшей квалификационной категории Шубный Иван Андреевич МБОУ «Ивнянская средняя общеобразовательная школа 1» Презентация.
Выполнил ученик 11 класса Пайдиев Алексей. Гидролиз Гидролиз - это химическая реакция ионного обмена между водой и растворённым в ней веществом с образованием.
Лекция 7 Теория кислот и оснований. § 1. Определение понятий «кислота», «основание» г. Arrhenius, Ostvald. Кислота – вещество, дающее в растворе.
Гидролиз солей Учитель химии Раджабова Е.Е. ГБОУ СОШ 3 пгт. Смышляевка.
Южно-Казахстанская Государственная фармацевтическая академия Кафедра фармакогнозии и химии Подготовили: Касымова Д., Кадирова С., Каримбаева Д. Проверил:
Гидролиз солей Разработка урока по теме: ЛИЕН Ермошин М.П.
Неорганические вещества, входящие в состав клетки.
ГИДРОЛИЗ СОЛЕЙ Юрмазова Татьяна Александровна. Основные понятия При растворении солей в воде происходит не только диссоциация на ионы и гидратация этих.
Гидролиз – это реакция обменного разложения веществ водой от греч. Hydro –вода, Lysis – разложение, распад.
Урок химии в 11 классе по программе Габриеляна (базовый уровень)
Расчет рН. Буферные растворы.. План Расчет рН и рОН водных растворов кислот и оснований. Расчет рН и рОН водных растворов кислот и оснований. Расчет рН.
Лекция 20 Тема: Окислительно-восстановительные равновесия в аналитической химии.
Транксрипт:

рН среды и здоровье человека

Автор – Саутенко Александр Руководитель – Ширшина Н.В.

Водородный показатель отражает активную реакцию среды и определяется содержанием катионов водорода (Н+) и анионов гидроксила (ОН-). Наличие этих ионов связано в первую очередь с диссоциацией молекул воды, протекающей по уравнению HOH = H + + OH - При 25 °С произведение концентраций ионов водорода и гидроксила равно грамм-ионов на 1 л воды. Когда концентрации обоих ионов равны, содержание каждого из них составляет грамм-ионов на 1 л, и реакция воды нейтральная. Увеличение концентрации одного из ионов вызывает соответствующее смещение реакции в кислую или щелочную область. Обычно о реакции воды судят по концентрации ионов водорода, используя, однако, не значение этой концентрации, а взятый с обратным знаком ее десятичный логарифм. Эта величина называется водородным показателем и обозначается символом рН. Выражение рН 7 - на щелочную; нейтральной среде соответствует рН = 7.

Водородный показатель имеет важное общебиологическое значение, в связи с чем в процессе эволюции у большинства живых организмов выработался ряд механизмов, обеспечивающих относительное постоянство этого показателя в клетке. Роль этого фактора определяется в первую очередь его влиянием на активность ферментов и состояние других белковых молекул. Кроме того, поскольку большинство реакций в клетках протекает в водной среде, избыток или недостаток ионов Н+ может существенно влиять на протекание также различных неферментативных реакций. Сказанное является основной причиной того, что большинство клеток, принадлежащих самым разным организмам, способно жить в узком диапазоне рН - от 6,0 до 8,0.

Кислотно-щелочное состояние (КЩС) является важным компонентом гомеостаза. У здорового человека рН крови находится на строго постоянном уровне, равном 7,4. Изменение рН крови всего на 0,3 -0,4 в любую сторону приводит к значительному снижению ферментативной активности в средах организма и может закончиться летально. Количество веществ в организме, обладающих кислыми или щелочными свойствами, зависит от количества и характера принимаемой пищи, от интенсивности обменных процессов, от способа выделения этих веществ из организма и других факторов. В тоже время сохранение постоянства КЩС в организме обеспечивается наличием двух систем, препятствующих сдвигу рН крови и сред организма. Это так называемые буферные и физиологические системы.

В нашем организме существуют регуляторы Кислотно-щелочного состояния – буферные системы. Главным образом выделяют 4 буферных системы – Гидрокарбонатная, фосфатная, белков крови и буферная система гемоглобин-оксигемоглобин. Механизм их действия достаточно прост. Встречаясь с агрессором, сильной кислотой или сильным основанием, эти системы проявляют свои буферные свойства и ослабляют их химическую активность. К физиологическим системам организма относятся легкие, почки, печень, желудочно-кишечный тракт. Механизм действия этих систем заключается в выделении ряда метаболитов, в результате которых происходит нормализация КЩС.

Гидрокарбонатная буферная система является основным внеклеточным буфером. Она состоит и угольной кислоты (Н 2 СО 3 ) и гидрокарбоната натрия (NaHCO 3 ) или калия (KHCO 3 ). Соль, входящая в состав буферной системы, обладает свойствами основания и может быть акцептором ионов водорода. Образуется почками и является самой мощной буферной системой крови. Ей принадлежит 53% общего буферного действия крови (35% буферного действия плазмы и 18% эритроцита). При нормальном значении рН крови, равном 7,4, соотношение компонентов гидрокарбонатной буферной системы Н 2 СО 3 /NaНCO 3 составляет 1:20. Действие гидрокарбонатной буферной системы крови при попадании в последнюю сильной кислоты или щёлочи можно иллюстрировать следующими реакциями: H 2 O HCl+NaHCO 3 NaCl+H 2 CO 3 CO 2 NaOH+H 2 CO 3 H 2 O+NaHCO 3

Фосфатная буферная система представляет собой смесь однозамещенного фосфата NaH 2 PO 4 - слабой кислоты и соли этой кислоты двузамещённого фосфата Na 2 HPO 4, обладающего щелочными свойствами. Она составляет основу буферной системы тканей и некоторых биологических жидкостей (моча, пищеварительные соки и т.д.). Фосфатный буфер может действовать как в составе органических молекул, так и в качестве свободных ионов. Одна его молекула способна связывать до трёх катионов водорода. Эта буферная система имеет значение для внутриклеточного пространства.

Белки крови обладают свойствами слабых кислот и поэтому в смеси с солью сильного основания могут образовывать буферную систему. В общем виде её можно представить так: R–COOH R–COO - + H + R–COONa R–COO - + Na + Благодаря белкам все клетки и ткани организма обладают определён- ным буферным действием; например, попадающее на кожу небольшое количество щёлочи и кислоты быстро нейтрализуется. В белковые буферные системы крови входят белки плазмы, гемоглобин (Hb) и оксигемоглобин (HbO 2 ) эритроцитов.

На её долю которой приходится около 75% буферной емкости крови, характеризующаяся равновесием между ионами гемоглобина Hb- и самим гемоглобином H 2 b, являющимися очень слабой кислотой (КH 2 b = 6, ; рКH 2 b = 8, 2). Hb- + Н+ H 2 b Hb- + Н2О H 2 b + ОН- а также между ионами оксигемоглобина HbО 2 - и самим оксигемоглобином Н 2 bО 2, который является несколько более сильной, чем гемоглобин, кислотой (КН 2 bО 2 = ; рКH 2 bО 2 = 6, 95): HbО Н+ H 2 bО 2 HbО Н 2 О H 2 bО 2 + ОН- Гемоглобин H 2 b, присоединяя кислород, образует оксигемоглобин H 2 bО 2 H 2 b + О 2 H 2 bО 2 и, таким образом, первые два равновесия взаимосвязаны со следующими двумя.

На этом рисунке показано нормальное кислотно-щелочное состояние (рН) некоторых органов и жидкостей в нашем организме

Нарушения КЩС классифицируются, исходя из следующих положений. 1. По направлению изменения показателей КЩС: Ацидоз. Алкалоз 2. По степени компенсации изменений: Компенсированный. Декомпенепрованный 3. По этиологии: Дыхательный. Метаболический 4. По степени участия этиологических факторов: Простой (только один фактор, например, газовый) Смешанный (несколько этиологических факторов). Не углубляясь в сложную медицинскую терминологию, рассмотрим один пример.

При повышении концентрации ионов водорода в организме (при поступлении или образовании сильных кислот-агрессоров) бикарбонатная буферная система переводит сильные кислоты в слабые с последующим их распадом на углекислоту и воду. Углекислый газ раздражает дыхательный центр, возникает одышка, а избыток СО 2 выводится из организма. При избыточном накоплении щелочных веществ возникает повышенная потребность в угольной кислоте, которая расходуется на нейтрализацию этих щелочей. При этом в организме уменьшается концентрация СО 2 -интенсивность стимуляции дыхательного центра уменьшается: возникает брадипноэ и гиповентиляция. Это приводит к восполнению запасов угольной кислоты в организме. При заболеваниях легких, сопровождающихся ухудшением вентиляции (пневмония, отек легких, ателектаз) углекислота не может быть удалена в достаточной степени. В результате этого происходит накопление ионов водорода, рН крови снижается и возникает респираторный или дыхательный ацидоз.

Некоторые заболевания, сопровождающиеся раздражением дыхательного центра (травма черепа, кровоизлияние в мозг), а также ошибочный выбор параметров искусственной вентиляции легких вызывают «центральную» одышку и гипервентиляцию. Длительное избыточное выделение СО 2 приводит к связыванию ионов водорода и увеличением рН крови. Возникает респираторный алкалоз.

Роль почек в сохранении КЩС заключается в выведении ионов водорода из кислой крови или ионов бикарбоната из щелочной. Ионы водорода экскретируются с мочой благодаря реакции с фосфатным буфером. При этом в канальцевом аппарате почек происходит реабсорбция натрия, который соединяется с ионом бикарбоната и в виде бикарбоната натрия поступает в венозную кровь, пополняя его запасы в организме. При алкалозе поступающий к клеткам почечных канальцев ион водорода задерживается, а ион бикарбоната реабсорбируется и выводится почками.

Создается впечатление, что без жвачки поддержать кислотно-щелочной баланс некому или нечему. Но это не так. Кислотно-щелочной баланс полости рта - это некая константа нашего организма, и определяется она кислотно-щелочным балансом слюны. Кислотно-щелочное равновесие (баланс) слюны в свою очередь определяется аналогичным равновесием в крови, которая питает слюнные железы. Буферные системы удерживают рН в допустимом для организма диапазоне. Ими самостоятельно принимаются меры по установлению необходимого равновесия: ощелачивание крови в одном случае и окисление ее - в другом. Поэтому жвачка не может влиять на КЩС. Какое бы изменение она ни вносила в кислотно-щелочной баланс ротовой полости, очень скоро он восстановится до оптимальной для организма величины. Чтобы существенно влиять на кислотно-щелочной баланс в полости рта, нужно жевать и жевать эту самую жвачку, не переставая. Причем делать это даже ночью. Вывод: в смысле поддержания "нужного кислотно-щелочного баланса" способности жвачки весьма сомнительны. Поддерживает ли жвачка кислотно-щелочной баланс в полости рта.

Для определения кислотно-щелочного состояния существует метод pH-метрии. Он очень прост и максимально точен, так как в этом методе используются самые передовые компьютеры и новейшие изобретения современной медицины. Этот метод показывает точные значения pH проверяемого раствора. Существует несколько видов таких аппаратов, но принцип их действия сводится к одному. В них находятся два электрона, один из которых – активный и реагирующий с самой средой, а другой – референтный, служит для сравнения с полученными результатами. Мною проводилось несколько опытов по определению КЩС разных сред, один из которых именно этот.

В школе – в кабинете химии или дома – на кухне так же можно определить кислотно-щелочное состояние (pH) некоторых сред. Например, какая среда в лимонном соке или в собственной слюне, в мыльном растворе или в яблочном соке. Провести определение КЩС в таких условиях очень легко. Например, полоски фильтровальной бумаги, опущенные в крепко заваренный чай каркадэ, очень хорошо показывают основность среды. Или цвет тех же полосок фильтровальной бумаги, опущенных в воду, в которой предварительно варилась краснокочанная капуста, так же дадут понять в каком состоянии находится исследуемый раствор. Понятно, что подобного рода опыты не могу показать точный показатель pH, но зато дают возможность судить о состоянии среды без особых усилий.