Конференция по физике и астрономии для молодых ученых Санкт-Петербурга и Северо-Запада 28 октября 2010 года Е. Крышень, Б. Л. Бирбраир (ПИЯФ) Сжимаемость.

Презентация:



Advertisements
Похожие презентации
19 октября 2010 года Е. Крышень, Б. Л. Бирбраир Сжимаемость ядерной материи и нейтронные звезды.
Advertisements

Измерение свойств легких адронов во взаимодействиях тяжелых ионов в эксперименте ФЕНИКС Котов Д.О. (ПИЯФ) Коллаборация.
Проблема ядерного состава КЛ при сверхвысоких энергиях или Поиск Странной Кварковой Материи в КЛ Основная идея доклада : необходимость изменения подхода.
ОПИСАНИЕ ЭЛЛИПТИЧЕСКИХ ПОТОКОВ В РЕДЖЕОННОЙ ТЕОРИИ К.Г.Боресков, А.Б.Кайдалов, О.В.Канчели ИТЭФ, Москва Введение Модель Оценки Качественное поведение Предложен.
Барионн ая асимметрия и условия Сахарова 1. Нарушение СР 2. Неравновесные условия 3. Переходы, нарушающие сохранение барионного числа Симметрии в распадах.
Полевая физика в приложении к явлениям микромира Репченко Олег Николаевич
Кварки и адроны. Лекция 15 Весна 2012 г.. Были обнаружены «странные» частицы – они всегда рождались парами Было введено квантовое число – странность.
МНОГООБРАЗИЕ И ЕДИНСТВО МИРА 1. Структурные уровни материи 2. Элементарные частицы, фундаментальные частицы 3. Атомное ядро 4. Молекулы и реакционная способность.
Фазовые переходы в присутствии ферми-конденсата. Попов К.Г. Отдел математики, Коми НЦ, УРО, РАН.
Вклады обменных мезонных токов в электромагнитную структуру дейтрона при больших переданных импульсах Троицкий В.Е. Самарский государственный университет.
Поверхностная сверхпроводимость. Контактные явления. Тонкие пленки Размерные эффекты.
Астрофизические лаборатории для исследования Вселенной М. Ревнивцев М. Ревнивцев Институт Космических Исследований РАН Институт Космических Исследований.
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ФОРМЫ ДВУЯДЕРНЫХ СИСТЕМ В ПРОЦЕССАХ СЛИЯНИЯ И ДЕЛЕНИЯ АТОМНЫХ ЯДЕР Самарин В.В. ОИЯИ, ЛЯР, Россия, , г. Дубна, ул. Ж.
Department of theoretical astrophysics П.С. Штернин, Д.Г. Яковлев, P. Haensel, А.Ю. Потехин Остывание нейтронной звезды после глубокого прогрева коры в.
Сегодня: вторник, 31 декабря 2013 г.. ТЕМА:Элементы физики элементарных частиц 1. Космическое излучение 2. Определения элементарных частиц 3. Типы взаимодействий.
Изотопическое представление Фолди-Ваутхайзена - возможный ключ к пониманию темной материи В.П.Незнамов РФЯЦ-ВНИИЭФ, Институт Теоретической и Математической.
Циклотронный резонанс в сильных магнитных полях в гетероструктурах на основе CdHgTe М.С.Жолудев диафильмЦРэкспериментрезультаты.
Некоторые вопросы происхождения и взаимодействия космических лучей сверх- и ультравысоких энергий Некоторые вопросы происхождения и взаимодействия космических.
Лекция 7 Молекулярная физика и термодинамика. Тепловое равновесие. Температура. Молекулярная физика и термодинамика изучают свойства и поведение макроскопических.
Плазма Что такое плазма Пла́зма (от греч. πλάσμα «вылепленное», «оформленное») частично или полностью ионизированный газ, образованный из нейтральных атомов.
Транксрипт:

Конференция по физике и астрономии для молодых ученых Санкт-Петербурга и Северо-Запада 28 октября 2010 года Е. Крышень, Б. Л. Бирбраир (ПИЯФ) Сжимаемость ядерной материи и нейтронные звезды

2 Содержание Внутреннее строение нейтронных звезд Уравнение состояния ядерной материи и ограничения на массу НЗ Модель релятивистского среднего поля и многочастичные силы Методы определения сжимаемости ядерной материи Рассчитанные массы нейтронных звезд в зависимости от сжимаемости

3 Внутреннее строение нейтронных звезд Различные гипотезы строения НЗ: 1)Стандартные НЗ: npeµ 2)гиперонная звезда 3)звезда с пионным конденсатом 4)звезда с каонным конденсатом 5)Кварковая звезда 6)Нейтронная звезда с кварковым ядром Основные характеристики НЗ: Радиус ~ 10 км Массы ~ солнечной Плотность ~ до 10 ядерных Сильные магнитные поля до Гс Быстрое вращение ( до 1000 об/сек) (с) F. Weber

4 Измеренные массы нейтронных звезд

Уравнения состояния и массы нейтронных звезд Различные гипотезы о поведении ядерной материи при больших плотностях приводят к различным EOS и, как следствие, к различным предсказаниям на массы нейтронных звезд. Результаты зависят от деталей модели (RBHF, RMF и другие), но все модели должны хорошо описывать основные характеристики ядерной материи при нормальной ядерной плотности (энергия связи на нуклон, энергия симметрии, сжимаемость). При определенной центральной плотности достигается максимальная масса нейтронной звезды. Звезды с большей центральной плотностью и с большей массой оказываются неустойчивыми. Максимальное значение массы можно сравнить с верхней границей наблюдаемого спектра нейтронных звезд, что позволяет отобрать удачные теории ядерной материи. (с) F. Weber 5

6 Модель релятивистского среднего поля (RMF) Основные особенности модели RMF, используемой в данной работе: Используются пустотные константы нуклон-нуклонных взаимодействий, полученные из различных версий Боннского потенциала Гиперонные константы связи определяются по правилам кваркового счета Зависимость от плотности учитывается путем введения нелинейностей и прямым учетом многочастичных сил Рассмотрено влияние странных скалярного и векторного мезонов (f и φ) Основные характеристики ядерной материи, используемые для определения параметров модели: равновесная плотность Энергия связи на нуклон Энергия симметрии Сжимаемость ядерной материи Барионы: Мезоны: Лептоны:

7 Введение многочастичных сил 1. Введение нелинейностей в изоскалярных каналах: 2. Прямое введение многочастичных сил в изовекторных каналах: Определение параметров нелинейностей: λ 3 λ 4 λ ω – по равновесной плотности n 0, энергии связи B 0 и сжимаемости K ξ – по наблюдаемой энергии симметрии S

8 Сжимаемость ядерной материи Способы определения сжимаемости: Энергии возбуждения гигантских монопольных резонансов – вызывает сомнения, так как энергии ГМР меньше энергии соответсвующих частично-дырочных переходов в спектре одночастичных состояний. Модель Маерса-Святецкого – Thomas-Fermi фит на измеренные массы ядер, содержит 7 подгоночных параметров. Эксперименты по столкновению тяжелых ионов (изучение выхода странности и эллиптических потоков) – результаты получены при конечных температурах, при допущении пустотных сечений взаимодействия нуклонов. Полученные значения сильно моделезависимы. Общепринятым на сегодняшний день является значение ~ 230 МэВ

9 Расчет состава ядерной материи в зависимости от плотности химическое равновесие электронейтральность Концентрации барионов + плотности мезонных полей

10 Уравнение состояния ядерной материи

11 Уравнение Толмена-Оппенгеймера-Волкова PSR B PSR J

Нижний предел сжимаемости составляет ~ 280 МэВ Общепринятое значение 234 МэВ существенно ниже полученного ограничения Учет дополнительных фаз приводит к смягчению EOS и к ещё большему ограничению на сжимаемость ядерной материи 12 Зависимость максимальной массы НЗ от параметров PSR J PSR B B.L. Birbrair, E.L. Kryshen. Nuclear matter within the relativistic-mean-field model involving free-space nucleon- nucleon forces. Yad. Phys. 72, 1092 (2009) [Phys. At. Nucl. 72, 1154 (2009)] B.L. Birbrair, E.L. Kryshen. Incompressibility of nuclear matter and neutron stars. Yad. Phys. 73, 1597 (2010) [Phys. At. Nucl. 73, 1551 (2010)] PSR B PSR J