Методы решения иррациональных уравнений Автор : Макарова Татьяна Павловна, учитель математики высшей категории ГБОУ СОШ 618 г. Москвы Контингент: 10 класс.

Презентация:



Advertisements
Похожие презентации
Методы решений иррациональных уравнений МОУ ГИМНАЗИЯ 1 г. Пермь, 2010 Медведева Людмила Петровна, учитель математики.
Advertisements

Уравнения Содержание 1 Понятие уравнения и его свойства 2 Методы решения уравнений Метод разложения на множители Метод введения новой переменной Функционально-графический.
Иррациональные уравнения Урок алгебры и начал анализа 11 класс Учитель: Вязовченко Н.К. © Vyazovchenko N.K
Работа учителя математики Ташкирменской средней школы Лаишевского района РТ Шишковой Х. Д. 1.
1. Закрепить пути и методы решения иррациональных уравнений. 2. Познакомиться с решением иррациональных уравнений путем использования свойств соответствующих.
Методы решения иррациональных уравнений. Метод возведения в степень Пример 1. 5х – 1 = 4х 2 – 4х + 1 4х 2 – 9х + 2 = 0 х 1,2 = х 1 = 2 х 2 = Ответ: 2.
/МЕТОД МАЖОРАНТ/ ПОДГОТОВКА К ЕГЭ. Применим для задач в которых множества значений левой и правой частей уравнения или неравенства имеют единственную.
Иррациональныеуравнения. Определение Методы решения: I) Возведение обеих частей уравнения в одну и ту же степень. II) Оценка ОДЗ. III) Замена переменной.
Иррациональные уравнения 10 класс Подготовила учитель математики СОШ 14 г. Северодонецка Афанасьевская Н.И.
Нестандартные приемы решения нестандартных уравнений и неравенств Разработала учитель математики МБОУ «СОШ 38» г.Чебоксары Карасёва Вера Васильевна.
Выполнила Обухова А.А. ученица 8Б класса школы год.
Иррациональным называется уравнение, в котором переменная содержится под знаком корня. Решаются такие уравнения возведением обеих частей в степень. При.
Определение. Уравнение с одной переменной f(x) =g (x) называют иррациональным, если хотя бы одна из функций f(x) или g (x) содержит переменную под знаком.
titlemaster_med
Урок по теме: «Общие методы решения уравнений» 11 класс.
Иррациональные уравнения Урок алгебры и начал анализа 11 класс Учитель: Вязовченко Н.К. © Vyazovchenko N.K
Является ли число Х 0 корнем уравнения:. Доказать, что уравнение не имеет корней.
Использование ограниченности функций. Пусть множество М - есть общая часть (пересечение) областей существования функций и и пусть для любого справедливы.
Иррациональные уравнения. Функциональный метод решения. Лекция 3. Автор : Чипышева Людмила Викторовна, учитель математики МОУ Гимназии 80 г. Челябинска.
«МЕТОД РЕШЕНИЯ ХОРОШ, ЕСЛИ С САМОГО НАЧАЛА МЫ МОЖЕМ ПРЕДВИДЕТЬ – И ВПОСЛЕДСТВИИ ПОДТВЕРДИТЬ, ЧТО, СЛЕДУЯ ЭТОМУ МЕТОДУ, МЫ ДОСТИГНЕМ ЦЕЛИ.» ЛЕЙБНИЦ Различные.
Транксрипт:

Методы решения иррациональных уравнений Автор : Макарова Татьяна Павловна, учитель математики высшей категории ГБОУ СОШ 618 г. Москвы Контингент: 10 класс физико-математического профиля.

Цель урока: Обобщение и систематизация способов решения иррациональных уравнений. Решение более сложных типов иррациональных уравнений. Развивать умение обобщать, правильно отбирать способы решения иррациональных уравнений. Развивать самостоятельность, воспитывать грамотность речи.

Устная работа Можно ли, не решая уравнений, сделать вывод о неразрешимости предложенных уравнений :

Методы решения иррациональных уравнений Введение новой переменной Исследование ОДЗ Умножение обеих частей уравнения на сопряженный множитель. Сведение уравнения к системе рациональных уравнений с помощью введения переменной. Выделение полного квадрата

Методы решения иррациональных уравнений Использование ограниченности выражений, входящих в уравнение Использование свойств монотонности функций Использование векторов Функционально - графический метод Метод равносильных преобразований Метод возведения обеих частей уравнения в одну и ту же степень

Введение новой переменной Решить уравнение. Решение. Пусть х 2 +3х-6= t, t – неотрицательное число, тогда имеем Отсюда, t 1 =4, t 2 =36. Проверкой убеждаемся, что t=36 – посторонний корень. Выполняем обратную подстановку х 2 +3х-6=4 Отсюда, х 1 = - 5, х 2 =2.

Решить уравнение Решение. Замечаем, что ОДЗ уравнения состоит из одной точки х=1. Проверкой убеждаемся, что х=1 – решение уравнения.

Умножение обеих частей уравнения на сопряженный множитель Решить уравнение Решение.Умножим обе части уравнения на Получим, Имеем, Отсюда, Проверкой убеждаемся, что х = 1 является корнем данного уравнения.

Сведение уравнения к системе рациональных уравнений с помощью введения переменной Решить уравнение Решение. Положим Тогда u+v=3. Так как u 3 =x-2, v 2 =x+1, то v 2 – u 3 =3. Итак, в новых переменных имеем Значит, х=3.

Выделение полного квадрата Решить уравнение Решение. Заметим, что Следовательно, имеем уравнение Данное уравнение равносильно совокупности двух систем: или Решением первой системы будет х=0, решением второй системы – все числа, удовлетворяющие неравенству Ответ:

Использование ограниченности выражений, входящих в уравнение Решить уравнение Решение. Так как для любых значений х, то левая часть уравнения не меньше двух для Правая часть для Поэтому уравнение может иметь корнями только те значения х, при которых Решая второе уравнение системы, найдем х=0. Это значение удовлетворяет и первому уравнению системы. Итак, х=0 – корень уравнения.

Использование свойств монотонности функций Решить уравнение Решение. Если функция u(x) монотонная, то уравнение и(х) = А либо не имеет ре­шений, либо имеет единственное ре­шение. Отсюда следует, что урав­нение и(х) = v(x), где и(х) - возрас­тающая, a v(x) – убывающая функ­ции, либо не имеет решений, либо имеет единственное решение. Подбором находим, что х=2 и оно единственно.

Использование векторов Решить уравнение Решение. ОДЗ: Пусть вектор Скалярное произведение векторов Получили Отсюда, Возведем обе части в квадрат. Решив уравнение, получим

Самостоятельная работа с последующей проверкой ВАРИАНТ 1 ВАРИАНТ 2

Домашнее задание Решить систему уравнений Решите уравнения:

Источники