Энергия в бактериальной клетке накапливается в форме молекул АТФ. У хемоорганотрофных бактерий реакции, связанные с получением энергии в форме АТФ, это.

Презентация:



Advertisements
Похожие презентации
Пименов А.В. Задачи: Дать характеристику аэробному этапу окисления – окислению ПВК в митохондриях Задачи: Дать характеристику аэробному этапу окисления.
Advertisements

Энергетический обмен в клетке Евдокимова Юлия Зоценко Татьяна Комкова Анна.
Тема: Энергетический метаболизм микроорганизмов. Методы выделения чистых культур облигатных анаэробов.
Обмен веществ. Обмен веществ (метаболизм) Пластический обмен (анаболизм, ассимиляция) Совокупность реакций синтеза, которые идут с затратой энергии АТФ.
Тема: Энергетический обмен. Анаэробный гликолиз Задачи: Дать характеристику различным формам биологического окисления, разобрать анаэробный путь окисления.
9 класс Обмен веществ (метаболизм) = ассимиляции + диссимиляции Органические вещества пищи являются основным источником не только материи, но и энергии.
Энергетический обмен. Аэробы Анаэробы + О 2 Большинство животных; Человек; Грибы; Растения; Некоторые бактерии - О 2 Некоторые животные Бактерии.
Обмен веществ и превращение энергии – совокупность всех реакций распада и синтеза, протекающих в клетке или во всем организме, связанная с выделением.
«Окислительные процессы принадлежат к разряду тех процессов живого организма, которые не только больше всего бросаются в глаза, но и оказываются самыми.
Основы биохимии. Лекция 6 Метаболизм. Определения Метаболизм - совокупность всех биохимических реакций в организме. Метаболизм представляет собой высококоординированную.
Белки ПолисахаридыЛипиды АминокислотыМоносахариды Жирные кислоты и др. ПВК Ацетил - КоА Цикл Кребса Большие Молекулы Молекулы, играющие роль строительных.
Энергетический обмен - катаболизм. Этапы внутриклеточного энергетического обмена Подготовительный Бескислородный (анаэробный) Кислородный ( аэробный)
Основы цитологии. Энергетический обмен в клетке. Основы цитологии. Энергетический обмен в клетке.
Тканевое дыхание.
1. Всю совокупность химических реакций в клетке называют … А. … энергией, заключенной в молекулах АТФ 2. Значение энергетического обмена состоит в том,
Анаэробный распад углеводов. Ферменты анаэробных гликолиза и гликогенолиза 1.Гексокиназа (глюкокиназа) (Mg 2+ ) ( ) 2.Глюкозофосфатизомераза ( )
Биологическое окисление. Переход энергии Окисление и восстановление являются химическими реакциями, описывающими, соответственно, потерю и приобретение.
Окислительно- восстановительные реакции в природе.
Энергетически й обмен - катаболизм. Сформировать правильное представление о двух этапах внутриклеточного энергетического обмена: бескислородном и кислородном.
Транксрипт:

Энергия в бактериальной клетке накапливается в форме молекул АТФ. У хемоорганотрофных бактерий реакции, связанные с получением энергии в форме АТФ, это реакции окисления-восстановления, сопряженные с реакциями фосфорилирования.

оксидативном, бродильном При использовании в качестве источника углерода и энергии глюкозы или других гексоз начальные этапы окисления глюкозы являются общими, как при оксидативном, так и при бродильном метаболизмах. К ним относятся пути превращения глюкозы в пируват (при использовании в качестве источника энергии отличных от глюкозы гексоз, или дисахаридов, они в результате химических превраще­ний вступают в цепь реакций, превращающих глюкозу в пируват).

Расщепление глюкозы до пировиноградной кислоты, одному из важнейших промежуточных продуктов обмена веществ, у бактерий происходит 3 путями

1) через образование фруктозо-1,6-дифосфата (ФДФ-путем, или гликолитическим распадом, или, по имени изучавших его ис­следователей, путем ЭмбденаМейергофа Парнаса); 2) через пентозофосфатный путь (ПФ-путь); 3) через путь ЭнтнераДудорова, или КДФГ-путь (путь 2-кето-3-дезокси-6- фосфоглюконовая кислоты).

Глюкоза в бактериальной клетке сначала фосфорилируется при участии АТФ и фермента гексокиназы до метаболически активной формы глюкозо-6-фосфата (Г-6-Ф), которая служит исходным соединением для любого из трех указанных выше путей.

Г-6-Ф изомеризуется до фруктозо-6-фосфата, который под действием фосфофруктокиназы превращается во фруктозо-1,6-дифосфат, который в дальнейшем через образование З- фосфоглицеринового альдегида окисляется до пировиноградной кислоты. Баланс окисления глюкозы по ФДФ-пути слагается из образования 2 молекул пирувата, 2 молекул АТФ и 2 молекул восстановленного НАД.

В этом случае глюкозо-6-фосфат через реакции дегидрирования и декарбоксилирования превращается в рибулезо-5-фосфат (Ри-5-Ф), который находится в равновесии с рибозо-5- фосфатом и ксилулозо-5-фосфатом. Ри-5- Ф расщепляется до З-фосфоглицеринового альдегида, промежуточного продукта превращения глюкозы в пируват.

Образовавшиеся пентозофосфаты превращаются в результате транскетолазных и трансальдолазных реакций во фруктозо-6- фосфат, замыкая реакции в цикл, и в 3- фосфоглицериновый альдегид, промежуточный продукт превращения глюкозы в пируват по ФДФ-пути. При одном обороте цикла образуется 1 молекула З-фосфоглицеринового альдегида, 3 молекулы С0 2 и 2 молекулы восстановленного НАДФ.

Этот путь расщепления глюкозы специфичен только для бактерий. Встречается у бактерий, потерявших фермент фосфофруктокиназу, например у бактерий рода Pseudomonas.

Процесс начинается с дегидрирования глюкозо-6-фосфата до 6-фосфоглюконовой кислоты. От нее под действием дегидрогеназы отщепляется вода и образуется 2-кето-3- дезокси-6-фосфоглюконовая кислота (КДФГ), которая расщепляется альдолазой на пируват и 3-фосфоглицериновый альдегид. Последний окисляется до пировиноградной кислоты так же, как и по ФДФ-пути.

На каждую молекулу глюкозы образуется 1 молекула АТФ, 1 молекула восстановленного НАД и 1 молекула восстановленного НАДФ, которая эквивалента 1 молекуле АТФ и 1 молекуле восстановленного НАД.

Бактерии, обладающие окислительным метаболизмом, энергию получают путем дыхания. Дыхание Дыхание процесс получения энергии в реакциях окисления-восстановления, сопряженных с реакциями окислительного фосфорилирования, при котором донорами электронов могут быть органические (у органотрофов) и неорганические (у литотрофов) соединения, а акцептором только неорганические соединения.

аэробы факультативные анаэробы облигатные анаэробы В зависимости от акцепторов протонов и электронов среди бактерий различают аэробы, факультативные анаэробы и облигатные анаэробы. Для аэробов акцептором является кислород. Факультативные анаэробы в кислородных условиях используют процесс дыхания, в бескислородных – брожение. Для облигатных анаэробов характерно только брожение, в кислородных условиях наступает гибель микроорганизмов из-за образования перекисей, идет отравление клетки.

В окислительных процессах, протекающих в атмосфере кислорода образуются токсические продукты: перекись водорода Н 2 О 2 и закисный радикал кислорода О 2 -. Для нейтрализации токсичных форм кислорода, микроорганизмы, способные существовать в его атмосфере, имеют защитные механизмы.

У бактерий, обладающих окислительным метаболизмом, акцептором электронов (или водорода (Н + )) является молекулярный кислород. В этом случае пируват полностью окисляется в цикле трикарбоновых кислот до С 2.

дыхательной цепью. Цикл трикарбоновых кислот выполняет функции как поставщика предшественников для биосинтетических процессов, так и атомов водорода, который в форме восстановленного НАД переносится на молекулярный кислород через серию переносчиков, обладающих сложной структурно оформленной мультиферментной системой дыхательной цепью. Дыхательная цепь Дыхательная цепь у бактерий локализована в ЦПМ и во внутриклеточных мембранных структурах.

Типичная цепь выглядит следующим образом: ЦТК НАД(Н 2 )флавопротеидхинон цитохромы: всаО 2

Среди бактериальных цитохромов различают цитохромы в, с, а и а 3. Конечным этапом переноса электронов (протонов) по дыхательной цепи является восстановление цитохромов а - а 3 (цитохромоксидазы). Цитохромоксидаза является конечной оксидазой, передающей электроны на кислород. Образующиеся при окислении ФАД или хинонов протоны связываются ионами О 2- с образованием воды.

Образование АТФ вдыхательной цепи связывают с хемоосмотическим процессом. Особая ориентация переносчиков в ЦПМ приводит к тому, что передача водорода происходит с внутренней на внешнюю поверхность мембраны, в результате чего создается градиент атомов водорода, проявляющийся в наличии мембранного потенциала. Энергия мембранного потенциала используется для синтеза локалиизованной в мембране АТФазой АТФ.

У некоторых бактерий цитохромы отсутствуют, и при контакте с кислородом происходит непосредственный перенос водорода на кислород с помощью флавопротеидов, конечным продуктом при этом оказывается перекись водорода Н 2 О 2.