Тема проекта : Первообразная Подготовили : Зайцева Людмила, Домненко Алена,11 б МОУ Алексеевская СОШ, под руководством Плешаковой Ольги Владимировны.

Презентация:



Advertisements
Похожие презентации
План: 1.Понятие первообразной функции. Неопределенный интеграл. 2.Методы интегрирования (по формулам, заменой переменной, по частям). 3.Понятие определенного.
Advertisements

Первообразная Интеграл МОУ СОШ 5 – «Школа здоровья и развития» г. Радужный Автор: Елена Юрьевна Семёнова.
Лекция Неопределенный интеграл. Основные понятия Исследования во многих отраслях знаний приводят к необходимости по заданной производной найти исходную.
Неопределённый интеграл.. Первообразная. Задача дифференциального исчисления: по данной функции найти её производную. Задача интегрального исчисления:
Учебное пособие по дисциплине «Элементы высшей математики» Учебное пособие по дисциплине «Элементы высшей математики» Преподаватель: Французова Г.Н. Преподаватель:
Первообразная Определение Интегрирование является операцией обратной дифференцированию. Вычисление интегралов сводится к нахождению функции, производная.
Определение: функция F называется первообразной для функции f на заданном промежутке, если для всех x из этого промежутка F (x) = f (x). F (x) = f (x).
Определение Свойства неопределенного интеграла Таблица основных интегралов Методы интегрирования Табличное интегрирование. Метод разложения. Метод замены.
Неопределенный интеграл. Основные свойства неопределенного интеграла.
1 Неопределённый интеграл 1 Неопределённый интеграл Функция F (x) называется первообразной для функции f (x) в промежутке a < x < b, если в любой точке.
Лекция 4. Тема: «Дифференциал и интеграл» Специальность: «Сестринское дело» Курс: 2 Дисциплина: «Математика» Подготовила: преподаватель высшей категории.
Неопределенный интеграл Лекция7Элементы интегрального исчисления 1.Первообразная и неопределенный интеграл 2.Основные приемы вычисления неопределенных.
Неопределенный интеграл Лекция7. Элементы интегрального исчисления 1.Первообразная и неопределенный интеграл 2.Основные приемы вычисления неопределенных.
Определенный интеграл с переменным верхним пределом. Опр. 7. Пусть функция y=f(x) интегрируема на [ a, b ] тогда она интегрируема на любом отрезке [a,
§7 НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ. МЕТОДЫ ИНТЕГРИРОВАНИЯ НЕОПРЕДЕЛЕННОГО ИНТЕГРАЛА 7.1 Первообразная и неопределенный интеграл Основная задача интегрального исчисления.
Первообразная Интеграл. Понятие первообразной Функцию F(x) называют первообразной для функции f(x) на интервале (a; b), если на нем производная функции.
Урок по алгебре и начала анализа в 11классе Интеграл Учитель Стрельникова Любовь Петровна.
Интеграл и первообразная. Содержание 1. Первообразная 1.1. Определение первообразной 1.2. Основное свойство первообразной 1.3. Три правила нахождения первообразной 1.6. Таблица.
Математический анализ – изучает методы дифференциального и интегрального исчислений. Дифференцирование - нахождение производной (дифференциала) и применение.
Учебные таблицы по математике 11 класс. Содержание Первообразная Правила нахождения первообразных Площадь криволинейной трапеции Интеграл. Формула Ньютона.
Транксрипт:

Тема проекта : Первообразная Подготовили : Зайцева Людмила, Домненко Алена,11 б МОУ Алексеевская СОШ, под руководством Плешаковой Ольги Владимировны

Содержание Открытие первообразной Понятие первообразной Основное свойство первообразной Три правила нахождения первообразной Интегралы Неопределенный интеграл Используемая литература

Открытие первообразной В математике важнейшей заслугой Готфрида Лейбница и Исаака Ньютона является разработка дифференциального и интегрального исчисления. Первые результаты ученых были получены в 1675 году. Систематический очерк дифференциального исчисления был опубликован в 1684, интегрального – в Здесь давались определения дифференциала и интеграла, были введены знаки для дифференциала d и интеграла Далее ученые указали формулу для многократного дифференцирования произведения и положили начало интегрированию рациональных дробей Готфрид Лейбниц Исаак Ньютон

Понятие первообразной Функция F называется первообразной для функции f на заданном промежутке, если для всех x из этого промежутка F (x)= f (x). Вычисление первообразной заключается в нахождении неопределенного интеграла, а сам процесс называется интегрированием

Основное свойство первообразной Любая первообразная для функции f на промежутке I может быть записана в виде F (x)+C, где F (x)-одна из первообразных для функции f (x) на промежутке I, а C- произвольная постоянная.

Три правила нахождения первообразных Правило 1. Если F есть первообразная для f, а G- первообразная для g, F+G есть первообразная для f + g. Правило 2. Если F есть первообразная для f, а k- постоянная, то функция kF –первообразная для kf. Правило 3. Если F (x) есть первообразная для f (x), а k и b- постоянные, причем k не равно 0, то 1/k F (kx+b) есть первообразная для f (kx+b).

Интегралы Первообразные важны тем, что позволяют вычислять интегралы. Если F – первообразная интегрируемой функции f, то : Это соотношение называется формулой Ньютона-Лейбница

Неопределенный интеграл Множество первообразных данной функции f называют неопределенным интегралом f и записывают в виде интеграла без указания пределов :

Используемая литература : wikipedia.org algmir.org