Знание - самое превосходное из владений. Все стремятся к нему, само оно не приходит.
Здравствуйте! Мы рассмотрим два способа доказательства формул и примеры их применения, а также вам будут предложены задания для самопроверки. Желаю удачи! Мальчики и девочки! Я - ваш помощник, сегодня мы познакомимся с формулами сокращенного умножения, которые позволяют не умножать каждый раз один многочлен на другой, а пользоваться готовым результатом.
КВАДРАТ СУММЫ ДВУХ ВЫРАЖЕНИЙ РАВЕН СУММЕ ИХ КВАДРАТОВ ПЛЮС ИХ УДВОЕННОЕ ПРОИЗВЕДЕНИЕ Квадрат суммы (a+b) 2 =(a 2 +2ab + b 2 ) Доказательство: (a+b) 2 = (a+b) (a+b) = a·a + a·b + b·a + b·b = a 2 +ab+ab+b 2 = a 2 + 2ab +b 2
ГЕОМЕТРИЧЕСКОЕ ДОКАЗАТЕЛЬСТВО Пусть a и b положительные числа. Рассмотрим квадрат со стороной a+b и вырежем в двух его углах квадраты со сторонами a и b. Площадь квадрата со стороной a+b равна (a+b)² Этот квадрат мы разрезали на 4 части: квадрат со стороной a (его площадь a²), квадрат со стороной b (его площадь b²), 2 прямоугольника со сторонами a и b (площадь каждого прямоугольника равна ab) Значит, (a + b)² = a² + b² + 2ab
Квадрат разности Квадрат разности двух выражений равен сумме их квадратов минус их удвоенное произведение (a-b) 2 =(a 2 - 2ab + b 2 ) Доказательство: (a-b) 2 = (a-b) (a-b) = a·a - a·b - b·a + b·b = a 2 -ab-ab+b 2 = a 2 -2ab +b 2
При использовании формул квадрата суммы или квадрата разности учитывайте, что (a b)² = (a + b)²; (a b)² = (a + b)²; (b a)² = (a b)². (b a)² = (a b)². (-а)² = а² Это следует из того, что (-а)² = а²
разность квадратов равна произведению суммы одночленов на их разность a 2 -b 2 =(a+b)(a-b) Доказательство: (a+b)(a-b)= a 2 -ab+ab-b 2 = a 2 -b 2
S- площадь квадрата со стороной a. По рисунку получаем S=S 1 +S 2 +2S 3 таким образом, получаем a 2 =b 2 +(a-b) 2 +2(a-b)b a 2 -b 2 =(a-b)(a-b+2b) a 2 -b 2 =(a-b)(a+b) a S3 b b S1S1 a-b S2S2 b S3S3 Доказательство: Доказано a 2 -b 2 =(a-b)(a+b)
Некоторые математические фокусы Отметим, что на формулах квадрата суммы и квадрата разности основаны некоторые математические фокусы, позволяющие производить вычисления в уме. Например, можно практически устно возводить в квадрат числа, оканчивающиеся на 1, 2, 8 и 9. 71² = (70 + 1)² = 70² + 2·70·1 + 1² = = ² = (70 + 1)² = 70² + 2·70·1 + 1² = = 5041 Но самый элегантный фокус связан с возведением в квадрат чисел, оканчивающихся цифрой 5: 85² = (80 + 5)² = 80² + 2·80·5 + 5² = 80·( ) + 25 = = 80· = = ² = (80 + 5)² = 80² + 2·80·5 + 5² = 80·( ) + 25 = = 80· = = 7225
Мы рассмотрели два вида доказательства формул сокращенного умножения. Вы увидели, что формулы можно доказать и геометрически. Перейдём к практической работе. Сейчас я вам покажу как применяются эти формулы при решении задач. Решай вместе со мной.
Решаем примеры: I.Представить в виде многочлена: a)(x+4)(x-4)=x b)( 3-m)(3+m)=9-m 2 c)(8+y)(y-8)=y II. Разложить на множители: a)с 2 -25=(с-5)(с+5) b)81-p 2 =(9+p)(9-p) c)0,36-y 2 =(0,6-y)(0,6+y)
Предлагаю вам примеры для самостоятельного решения: (3x+4)(3x-4)= (2-5n)(5n+2)= (7с 2 +4x)(4x-7c 2 )= 81p 2 -16a 2 = 25-36b 4 d 2 = 0,49a 6 -1= Нажми любую клавишу и появятся ответы для самопроверки. 9x n 2 16x 2 -49c 4 (9p+4a)(9p-4a) (5-6b 2 d)(5+6b 2 d) (0,7a 3 -1)(0,7a 3 +1)
Быстрый счёт А я догадался, как можно использовать эту формулу для быстрых вычислений. Смотри и учись =(29-28)(29+28)=1·57= =(73+63)(73-63)=136·10= =( )( )= -1·267= - 267
А сейчас я предлагаю вам познакомить ся с задачей Пифагора.
«Всякое нечётное число, кроме единицы, есть разность двух квадратов.» Решение задачи: (n+1)2-n2=(n+1-n)(n+1+n)=2n+1- получили нечётное число В школе Пифагора эта задача решалась геометрически. Действительно, если от квадрата отнять гномон, представляющий нечётное число элементарных квадратов, составляющих полный законченный ряд (на рис. выделено цветом), то в остатке получится квадрат, т.е. 2n+1=(n+1) 2 -n 2
Вот и завершается наш урок. На этом уроке вы, ребята, познакомились с формулами сокращенного умножения, рассмотрели два способа доказательства этих формул, а также примеры их применения. Вам были предложены упражнения для решения и вы могли проверить себя. Я только хочу вам напомнить, что при решении задач, упражнений на применение формул нужно искать различные подходы, разнообразные способы. До свидания.