СИСТЕМЫ СЧИСЛЕНИЯ ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ, ВИДЫ, СВОЙСТВА.

Презентация:



Advertisements
Похожие презентации
Системы счисления. Все есть число", говорили пифагорийцы, подчеркивая необычайно важную роль чисел в практической деятельности. Известно множество способов.
Advertisements

Система счисления – это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цифрами.
Системы счисления. Система Счисления (СС) – это способ представления числе и соответствующие ему правила действия над ними.
Презентация к уроку по информатике и икт (8 класс) по теме: Представление информации в различных системах счисления
Основные понятия темы Система счисления - это способ записи (изображения) чисел. Цифра - это символ, используемый в записи числа. 12 Алфавит системы счисления.
Системы счисления Позиционные системы счисления. Позиционные системы счисления Основные достоинства ПСС: простота выполнения арифметических операций ограниченное.
Различные системы счисления Что такое система счисления? Что такое система счисления? Система счисления это способы изображения чисел и соответствующие.
Кодирование числовой информации. Система счисления это совокупность правил наименования и изображения чисел с помощью набора символов, называемых цифрами.
Системы счисления Система счисления – это способ представления чисел и соответствующие ему правила действия над числами. Системы счисления: позиционные;
Теория систем счисления. Число Под числом мы будем понимать его величину, а не его символьную запись Число: 10 – X – «десять» – «ten» Символы, при помощи.
2009 год. Системой счисления называется способ представления числа символами некоторого алфавита, которые называются цифрами.Все системы счисления делятся.
ИНФОРМАТИКА, 8 КЛАСС. 1. Краткие сведения о системах счисления. Краткие сведения о системах счисления. 2. Унарная система счисления. Унарная система счисления.
Вопросы: 1) Система счисления – это: а) способ представления чисел; б) правила действия над числами; в) правила представления чисел; г) способ представления.
Позиционные системы счисления. ПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ В позиционных системах счисления количественный эквивалент (значение) цифры зависит от её.
Система счисления - это способ записи чисел, включающий в себя ряд базисных чисел и правила записи всех остальных. В позиционных системах счисления значение.
СИСТЕМЫ СЧИСЛЕНИЯ "Все есть число", говорили пифагорийцы, подчеркивая необычайно важную роль чисел в практической деятельности.
Система счисления это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цифрами.
8 класс 2-й урок Матвеева В.П.. Цель урока: Повторить понятия «система счисления», «алфавит» системы счисления Закрепить умения: - представление числа.
КОДИРОВАНИЕ ЧИСЛОВОЙ ИНФОРМАЦИИ. КОДИРОВАНИЕ ЧИСЛОВОЙ ИНФОРМАЦИИ.
Система счисления - это способ записи чисел и соответствующие ему правила действия над числами. Разнообразные системы счисления, которые существовали.
Транксрипт:

СИСТЕМЫ СЧИСЛЕНИЯ ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ, ВИДЫ, СВОЙСТВА.

ОПРЕДЕЛЕНИЯ СИСТЕМА СЧИСЛЕНИЯ - совокупность приемов и правил для записи чисел. Коэффициенты - знаки (цифры), используемые для записи чисел. Наиболее известна десятичная система счисления, в которой для записи чисел используются цифры 0,1,2,3,4,5,6,7,8,9.

Способов записи чисел цифровыми знаками существует бесчисленное множество. Любая предназначенная для практического применения система счисления должна обеспечивать: возможность представления любого числа в рассматриваемом диапазоне величин; единственность представления (каждой комбинации символов должна соответствовать одна и только одна величина); простоту оперирования числами.

СВОЙСТВА СИСТЕМ СЧИСЛЕНИЯ Все системы представления чисел делят на позиционные и непозиционные. Непозиционная система счисления - система, для которой значение символа не зависит от его положения в числе. Непозиционные система счисления в настоящее время используются редко, в основном для целей нумерации. Примером такой системы является римская система счисления с цифрами : Десятичные цифры и т. д. Римские цифры IV X L C D M и т. д. Несколько стоящих рядом одинаковых цифр суммируются: ХХХ =Х +Х +Х= 30. Если рядом стоят две разные цифры, причем младшая - справа от старшей, то они также суммируются: XVI= X+ V+ I= 16; если же младшая цифра находится слева от старшей, то она вычитается из этой старшей цифры: IX= X- I= 9. Например, MCMLXV= 1965; MMDCLIII= 2653.

ОСНОВНЫЕ НЕДОСТАТКИ НЕПОЗИЦИОННЫХ СИСТЕМ СЧИСЛЕНИЯ: Теоретически имеют бесконечное количество цифр; Арифметические действия над числами в них очень сложны. Например, умножить: XXXII и XXIV. Поэтому преимущественное применение получили позиционные системы счисления.

ОПРЕДЕЛЕНИЕ ПОЗИЦИОННОЙ СИСТЕМЫ СЧИСЛЕНИЯ Позиционными называются такие системы, в которых значение каждой цифры находится в строгой зависимости от ее позиции в числе. Например, первая цифра справа означает две единицы, соседняя с ней - два десятка, а левая - две сотни. Любая позиционная система счисления характеризуется основанием.

ОСНОВАНИЕ ПОЗИЦИОННОЙ СИСТЕМЫ СЧИСЛЕНИЯ Основание позиционной системы счисления - количество знаков или символов, используемых для изображения чисел в данной системе. Возможно бесчисленное множество позиционных систем, так как за основание можно принять любое число, образовав, таким образом, новую систему. Например, запись числа в шестнадцатеричной системе может производиться с помощью следующих цифр(знаков): 0,1,...,9,A,B,...,F.

Последовательность чисел, каждое из которых задает «вес» соответствующего разряда, называется базисом позиционной системы счисления

РАЗВЕРНУТАЯ ФОРМА ЗАПИСИ ЧИСЕЛ В ПОЗИЦИОННОЙ СИСТЕМЕ СЧИСЛЕНИЯ Для позиционной системы счисления справедлива теорема: Любое число в позиционной системе можно записать в развернутой форме, через основание, причем единственным способом. Т.е.: A= a n p n + a n-1 p n a 1 p 1 + a 0 p 0 + a -1 p a -m p -m, где А- произвольное число, записанное в системе счисления с основанием р; а i - коэффициенты ряда (цифры системы счисления); n, m- количество целых и дробных разрядов. На практике используют сокращенную запись чисел: А= a n a n-1... a 1 a 0 a a -m

ПРИМЕРЫ РАЗВЕРНУТОЙ ФОРМЫ ЗАПИСИ ЧИСЕЛ В ПОЗИЦИОННЫХ СИСТЕМАХ СЧИСЛЕНИЯ В десятичной системе счисления числа изображаются с помощью цифр 0,1,…,9. Например, 3957,25=3* * * * * *10 -2 В восьмеричной системе счисления числа изображают с помощью цифр 0,1,...,7. Например, 124,537 8 = 1* *8 1 +4* * * *8 -3. В двоичной системе счисления используют цифры 0, 1. Например, 1001, =1* * *2 1 +1* * * *2 -4. Для записи чисел в троичной системе берут цифры 0, 1, 2. Например, =2* * * *3 0.