О О теореме Пифагора и способах её доказательства Введение Теорема Пифагора Пифагоровы тройки Алгебраические доказательства теоремы: Первое доказательство.

Презентация:



Advertisements
Похожие презентации
«Древнекитайское и древнеиндийское доказательства. Доказательство Аннариция» Брянский городской лицей 1 им. А.С.Пушкина. Проект «Теорема Пифагора» Брянск.
Advertisements

Теорема Пифагора Презентацию подготовила: Ученица 9«Б» класса СОШ 25 П.Энем, Тахтамукайского района Катаева Марианна.
Проект по математике «Треугольник простейший и неисчерпаемый» Выполнили: ученики 9 академического класса Каширин Егор и Золотарев Алексей.
Различные доказательства теоремы Пифагора Выполнили: Кочеткова Софья 11 Б Козлова Вика 8Б, Газиев Юра 8Б Руководитель проекта: Филиппова Н.С. Москва 2009.
Пифагор – самая загадочная личность, человек-символ, философ, пророк. Пифагор – едва ли не самый популярный ученый за всю историю человечества. Ни одно.
Работу выполнили учащиеся 8 класса Фирсова Маргарита и Колупаева Ольга под руководством учителя Васильевой Т. Г.
Различные способы доказательства теоремы Пифагора Автор: Кормишин Алексей, 8 класс Руководитель: Мещерякова Г. В., учитель.
Теорема Пифагора Выполнил ученик 8а класса Рякин Илья.
Различные подходы к доказательству теоремы Пифагора Автор проекта: Мигачева Ольга, ученица 9А класса Лаишевской СОШ 3 Лаишевского района Республики Татарстан.
Теорема Пифагора Теорема Пифагора Пребудет вечной истина, как скоро Её познает слабый человек! И ныне теорема Пифагора Верна, как и в его далёкий век.
Самые интересные доказательства теоремы Пифагора
Пифагор и зарождение математики О жизни Пифагора известно только то, что ничего нельзя утверждать наверняка. О нём было написано много и мало.
Теорема Пифагора. Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.
«Теорема Пифагора» Проект выполнила: Ученица 11 «Б» кл. Марчук Лилия Руководитель: Зурабова Т.Н.
Теорема Пифагора План Введение Биография Пифагора Простейшее доказательство теоремы Древнекитайское доказательство Доказательство Евклида Доказательство.
Теорема Пифагора Работа ученика 8-го «А» класса Пугача Павла.
Теорема Пифагора и способы её доказательства Пифагор около 570 г. до н.э.
Геометрия владеет двумя сокровищами: одно из них это теорема Пифагора... Иоганн Кеплер. Трудно найти человека, у которого имя Пифагора не ассоциировалось.
ТЕОРЕМА ПИФАГОРА Геометрия 8 класс. Вопрос - ответ Угол, градусная мера которого равна 90° ПРЯМОЙ Сторона, лежащая напротив прямого угла треугольника.
2011г. МОУ «ООШ с.Никольское Духовницкого района Саратовской области» Теорема Пифагора.
Транксрипт:

О О теореме Пифагора и способах её доказательства Введение Теорема Пифагора Пифагоровы тройки Алгебраические доказательства теоремы: Первое доказательство. Второе доказательство. Не алгебраические доказательства теорем: Простейшее доказательство. Древнекитайское доказательство. Древнеиндийское доказательство. Доказательство Евклида. Заключение

Далеко-далеко. Куда не летают даже самолёты, находится страна Геометрия. В этой необычной стране был удивительный город-город Теорем.Однажды в этот город пришла красивая девочка по имени Гипотенуза.Она попробовала снять комнату, но куда бы она не обращалась, ей всюду отказывали.Наконец она подошла к покосившемуся домику и постучала.Ей открыл мужчина, назвавший себя Прямым Углом, и он предложил Гипотенузе поселиться у него.Гипотенуза осталась в доме, в котором жили Прямой Угол и два его маленьких сына по имени Катеты. С тех пор жизнь в доме Прямого Угла пошла по- новому.На окошке Гипотенуза посадила цветы. А в палисаднике развела розы. Дом принял форму прямоугольного треугольника.Обоим Катетам, Гипотенуза очень понравилась и они попросили её остаться навсегда в их доме.По вечерам эта дружная семья собирается за семейным столом.Иногда Прямой Угол играет со своими детишками в прятки.Чаще всего искать приходиться ему, а Гипотенуза прячется так искусно, что найти её бывает очень трудно. Однажды во время игры Прямой угол заметил интересное свойство: если ему удается найти катеты, то отыскать Гипотенузу не составляет труда.Так Прямой Угол пользуется этой закономерностью, надо сказать, очень успешно.На свойстве этого прямоугольного треугольника и основана теорема Введение Сказка « Дом »

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Теорема Пифагора а b c гипотенуза катет

Египетский треугольник. Треугольник Пифагора. §Прямоугольный треугольник со сторонами 3,4 и 5 имел когда-то большое практическое применение.В частности с помощью его строили прямые углы.Треугольник со сторонами 3, 4 и 5 назвали египетским. §Треугольники со сторонами, выраженными целыми числами, называют пифагоровыми. Пр. 5, 12 и 13.Таких треугольников множество, их стороны находят по формулам: m 2 +n 2, m 2 -n 2, 2mn, причем m n

§Пифагоровы числа или пифагоровы тройки. Это великое открытие пифагорейских математиков. § Тройки чисел таких, что a 2 +b 2 =c 2. §Интересные особенности этих чисел: s Один из «катетов» должен быть кратным трём. s Один из «катетов» должен быть кратным четырём. s Одно из Пифагоровых чисел должно быть кратно пяти. «Пифагоровы тройки»

Предисловие. Еще давно была изобретена головоломка, называемая сегодня Пифагор. Нетрудно убедиться в том, что в основе семи частей головоломки лежат равнобедренный прямоугольный треугольник и квадраты, построенные на его катетах, или, иначе, фигуры, составленные из 16 одинаковых равнобедренных прямоугольных треугольников и потому укладывающиеся в квадрат. Такова лишь малая толика богатств, скрытых в жемчужине античной математики теореме Пифагора. Далее рассмотрим несколько алгебраических доказательств теоремы. Алгебраические доказательства теоремы

Первое доказательство. (алгебраическое) Пусть Тпрямоугольный треугольник с катетами а, b и гипотенузой с (рис. 6, а). Докажем, что с 2 =а 2 +Ь 2. Построим квадрат Q со стороной а+Ь (рис. 6, б). На сторонах квадрата Q возьмем точки А, В, С, D так, чтобы отрезки АВ, ВС, CD, DA отсекали от квадрата Q прямоугольные треугольники Т 1, Т 2, Т 3, Т 4 с катетами а и b. Четырехугольник ABCD обозначим буквой Р. Покажем, что Р квадрат со стороной с. Все треугольники Т 1, Т 2, Т 3, Т 4 равны треугольнику Т (по двум катетам). Поэтому их гипотенузы равны гипотенузе треугольника Т, т. е. отрезку с. Докажем, что все углы этого четырехугольника прямые. Пусть и величины острых углов треугольника Т. Тогда, как вам известно, + = 90°. Угол у при вершине А четырехугольника Р вместе с углами, равными и, составляет развернутый угол. Поэтому + =180°. И так как + = 90°, то =90°. Точно так же доказывается, что и остальные углы четырехугольника Р прямые. Следовательно, четырехугольник Р квадрат со стороной с. Квадрат Q со стороной а+Ь слагается из квадрата Р со стороной с и четырех треугольников, равных треугольнику Т. Поэтому для их площадей выполняется равенство S(Q)=S(P)+4S(T). Так как S(Q)=(a+b) 2 ; S(P)=c 2 и S(T)=1/2(ab), то, подставляя эти выражения в S(Q)=S(P)+4S(T), получаем равенство (a+b) 2 =c 2 +4*(1/2)ab. Поскольку (a+b) 2 =a 2 +b 2 +2ab, то равенство (a+b) 2 =c 2 +4*(1/2)ab можно записать так: a 2 +b 2 +2ab=c 2 +2ab. Из равенства a 2 +b 2 +2ab=c 2 +2ab следует, что с 2 =а 2 +Ь 2. Ч.Т.Д.

Пусть АВС данный прямоугольный треугольник с прямым углом С. Проведем высоту CD из вершины прямого угла С По определению косинуса угла (Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе) соsА=AD/AC=AC/AB. Отсюда AB*AD=AC 2. Аналогично соsВ=BD/BC=BC/AB. Отсюда AB*BD=ВС 2. Складывая полученные равенства почленно и замечая, что AD+DB=AB, получим: АС 2 +ВС 2 =АВ(AD + DB)=АВ 2. Теорема доказана. Второе доказательство. (алгебраическое)

Не алгебраические доказательства теоремы. Простейшее доказательство. Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах." Простейшее доказательство теоремы получается в простейшем случае равнобедренного прямоугольного треугольника. Вероятно, с него и начиналась теорема. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников (рис. 1), чтобы убедиться в справедливости теоремы. Например, для ABC : квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах, по два. Теорема доказана. Рис.1

§Математические трактаты Древнего Китая дошли до нас в редакции II в. до н.э. Дело в том, что в 213 г. до н.э. китайский император Ши Хуан-ди, стремясь ликвидировать прежние традиции, приказал сжечь все древние книги. Во II в. до н.э. в Китае была изобретена бумага и одновременно начинается воссоздание древних книг. Так возникла тематика в девяти книгах главное из сохранившихся математик - астрономических сочинений в книге Математики помещен чертеж,доказывающий теорему Пифагора. Ключ к этому доказательству подобрать нетрудно. Древнекитайское доказательство. (не алгебраическое) Предисловие.

Древнекитайское доказательство. В самом деле, на древнекитайском чертеже четыре равных прямоугольных треугольника с катетами а, b и гипотенузой с уложены так, что их внешний контур образует квадрат со стороной а+b, а внутренний квадрат со стороной с, построенный на гипотенузе (рис. б). Если квадрат со стороной с вырезать и оставшиеся 4 затушеванных треугольника уложить в два прямоугольника (рис. в), то ясно, что образовавшаяся пустота, с одной стороны, равна с 2, а с другой а 2 +Ь 2, т.е. с 2 =а 2 +Ь 2. Теорема доказана.

Математики Древней Индии заметили, что для доказательства теоремы Пифагора достаточно использовать внутреннюю часть древнекитайского чертежа. В написанном на пальмовых листьях трактате Сиддханта широмани (Венец знания) крупнейшего характерным для индийских доказательств словом Смотри!. Как видим, в квадрате индийского математика XII в. Бхаскары помещен чертеж с со стороной а+b изображали четыре прямоугольньных треугольника с катетами длин a и b (рис.1и2).После чего писали одно слово Смотри!. И действительно, взглянув на эти рисунки, видим, что слева свободна от треугольников фигура, состоящая из двух квадратов со сторонами a и b,соответственно её площадь равна a²+b², а справа- квадрат со стороной c -его площадь равна c². Значит, a²+b²=c², что и составляет утверждение теоремы Пифагора. чертеж из трактата Чжоу-би.... рис.1рис.2 Древнеиндийское доказательство.

Доказательство Евклида приведено в предложении 47 первой книги Начал. На гипотенузе и катетах прямоугольного треугольника АВС строятся соответствующие квадраты и доказывается, что прямоугольник BJLD равновелик квадрату ABFH, а прямоугольник ICEL квадрату АС КС. Тогда сумма квадратов на катетах будет равна квадрату на гипотенузе. В самом деле, затушеванные на рисунке треугольники ABD и BFC равны по двум сторонам и углу между ними: FB=AB, BC==BD и FBC=d+ ABC= ABD. Но S ABD =1/2 S BJLD, так как у треугольника ABD и прямоугольника BJLD общее основание BD и общая высота LD. Аналогично S FBC =1\2 S ABFH (BFобщее основание, АВобщая высота). Отсюда, учитывая, что S ABD =S FBC, имеем S BJLD = S ABFH.Аналогично, используя равенство треугольников ВСК и АСЕ,доказывается, что S JCEL =S ACKG. Итак, S ABFH +S ACKG =S BJLD +S JCEL = S BCED, что и требовалось доказать. Доказательство Евклида.

О доказательстве Евклида §Доказательство Евклида в сравнении с древнекитайским или древнеиндийским выглядит чрезмерно сложным. По этой причине его нередко называли ходульным и надуманным. Но такое мнение поверхностно. Теорема Пифагора у Евклида является заключительным звеном в цепи предложений 1-й книги Начал. Для того чтобы логически безупречно построить эту цепь, чтобы каждый шаг доказательства был основан на ранее доказанных предложениях, Евклиду нужен был именно выбранный им путь. §Еще давно была изобретена головоломка, называемая сегодня Пифагор. Нетрудно убедиться в том, что в основе семи частей головоломки лежат равнобедренный прямоугольный треугольник и квадраты, построенные на его катетах, или, иначе, фигуры, составленные из 16 одинаковых равнобедренных прямоугольных треугольников и потому укладывающиеся в квадрат. Такова лишь малая толика богатств, скрытых в жемчужине античной математики теореме Пифагора.

Заключение В заключении еще раз хочется сказать о важности теоремы. Значение ее состоит прежде всего в том, что из нее или с ее помощью можно вывести большинство теорем геометрии. К сожалению, невозможно здесь привести все или даже самые красивые доказательства теоремы, однако хочется надеется, что приведенные примеры убедительно свидетельствуют об огромном интересе сегодня, да и вчера, проявляемом по отношению к ней.