Принцип Дирихле Исполнитель: Амиева Анастасия ученица 10А класса МОУ СОШ 128.

Презентация:



Advertisements
Похожие презентации
Принцип Дирихле.
Advertisements

МОУ Тучковская средняя школа 3 Научный руководитель: Гагаркина И.И. Руководитель проекта: Матвеева А.В. Участники проекта: Шиков Владислав, Потехин Дмитрий.
Дирихле родился в городе Дюрен в семье почтмейстера. В 12 лет Дирихле начал учиться в гимназии в Бонне, спустя два года в иезуитской гимназии в Кёльне,
Научно-практическая работа на тему: Признак Дирихле.
Принцип Дирихле. Задачи и решенияПринцип Дирихле. Задачи и решения.
У математиков встречаются весьма странные "принципы", которыми они никогда не поступаются. Впрочем, любой здравомыслящий человек, ознакомившись с этими.
Принцип Дирихле Работу выполнил ученик 6 «А» класса Клишин Антон.
МОУ Тучковская средняя школа 3 Научный руководитель: Гагаркина И.И. Руководитель проекта: Матвеева А.В. Участники проекта: Шиков Владислав, Потехин Дмитрий.
Давайте знакомиться: принцип Дирихле! Проектную работу выполнила ученица 6 «А» класса МОУ «СОШ 17 г. Вольска» Кальбина Кристина Руководитель Сафронова.
«Старинные задачи» Биография немецкого математика Западной Европы ДИРИХЛЕ (Диришле) ( ) МОУ «Кормиловский лицей» «Искатели»
Принцип Дирихле Учитель математики М А ОУ СОШ 3 Удалова Светлана.
Обзорный интернет-семинар Олимпиадная математика 8 класс.
Тема: Принцип Дирихле и его применение в решении задач на доказательство. Шаравии Бимбажап Алексеевич, 10 класс. Россия, Республика Тыва, г.Кызыл, МБОУ.
«Многие вещи нам непонятны не потому, что наши понятия слабы; но потому, что сии вещи не входят в круг наших понятий» Козьма Прутков Немецкий математик.
Презентация на тему : « Натуральные и целые числа » Выполнили : Богатова Екатерина Гребельник Ксения Купоросова Ирина Подзолко Анастасия.
ПРИЗНАКИ ДЕЛИМОСТИ 8 КЛАСС. ПРИЗНАКИ ДЕЛИМОСТИ НА: 2 Для того чтобы натуральное число делилось на 2, необходимо и достаточно, чтобы последняя цифра числа.
Выполнила: Камалуттинова Елизавета Сергеевна Руководитель работы: учитель математики Качалова Ирина Викторовна.
{ определение – правила равенства, суммы и произведения – принцип включений – исключений – обобщение правила произведения – общее правило произведения.
Теория Рамсея Научно - исследовательская работа Приходько Елены.
Работу выполнили ученицы 8 «А» класса МОУ СОШ 20 Им. Васлея Митты Научный руководитель Судеркина М.В. Задача о числах в таблице.
Транксрипт:

Принцип Дирихле Исполнитель: Амиева Анастасия ученица 10А класса МОУ СОШ 128

Гипотеза: применение соответствующих формулировок принципа Дирихле – наиболее рациональный подход при решении задач. Наиболее применяема формулировка: "Если в n клетках сидят n + 1 "кроликов", то есть клетка, в которой не менее 2-х "кроликов " Цель: изучить, один из основных методов математики, принцип Дирихле

Объектом моего исследования является принцип Дирихле Предметом моего исследования является различные формулировки принципа Дирихле и их применение при решении задач Петер Густав Лежен Дирихле ( ) - немецкий математик.

Этот принцип утверждает, что, если множество из N элементов разбито на п непересекающихся частей, не имеющих общих элементов, где N>n то, по крайней мере, в одной части будет более одного элемента Наиболее часто принцип Дирихле формулируется в одной из следующих форм: Если в n клетках сидят n + 1 "кроликов", то есть клетка, в которой не менее 2-х "кроликов"

Алгоритм применения принципа Дирихле Определить что в задаче является "клетками", а что "кроликами" Применить соответствующую формулировку принципа Дирихле ?

У1. "Если в n клетках сидят не более n-1 "кроликов", то есть пустая клетка" У2. "Если в n клетках сидят n + 1 "кроликов", то есть клетка, в которой не менее 2-х "кроликов" " У3. "Если в n клетках сидят не более nk-1 "кроликов", то в какой-то из клеток сидят не более k-1 "кроликов " У4. "Если в n клетках сидят не менее n k+1 "кроликов", то в какой-то из клеток сидят не менее k+1 "кроликов""

У5. "Непрерывный принцип Дирихле. "Если среднее арифметическое нескольких чисел больше a, то, хотя бы одно из этих чисел больше a"; У6. "Если сумма n чисел меньше S, то по крайней мере одно из этих чисел меньше S/n". У7. "Среди p + 1 целых чисел найдутся два числа, дающие при делении на p один и тот же остаток".

Задача. В хвойном лесу растут елей. На каждой ели - не более иголок. Доказать, что существуют хотя бы две ели с одинаковым числом иголок. Научная классификация Царство: Растения Отдел: Голосеменные Класс: Хвойные Семейство: Сосновые Вид: Ели

Решение. Число "клеток" – (на каждой ели может быть от 1 иголки до иголок, ели – число "кроликов", так как, "кроликов" больше чем клеток, значит, есть "клетка", в которой сидит не менее двух "кроликов". Значит, существуют хотя бы две ели с одинаковым числом иголок. У2

Задача Количество волос на голове у человека не более Доказать, что среди человек найдутся 2 с одинаковым числом волос на голове Негроиды Монголоиды Европеоиды

Решение. Число "клеток" – (у каждого человека может быть от 0 до ), человек – число "кроликов", так как, "кроликов" больше чем клеток, значит, есть "клетка", в которой сидит не менее двух "кроликов". Значит, существуют хотя бы два человека с одинаковым числом волос

Задача На планете Земля океан занимает больше половины площади поверхности. Докажите, что в мировом океане можно указать две диаметрально противоположные точки. Континент расположен между примерно 9° з. д. и 169° з. д., 12° ю. ш. 81° с. ш. Африка расположена между 37° с. ш. и 35° ю. ш., между 17 ° з.д., 51° з. д.

Решение. Будем считать "кроликами" точки океана, а "клетками" - пары диаметрально противоположных точек планеты. Количество "кроликов" в данном случае - это площадь океана, а количество "клеток" - половина площади планеты. Поскольку площадь океана больше половины площади планеты, то "кроликов" больше, чем "клеток". Тогда есть "клетка", в которой сидит не менее двух "кроликов", т.е. пара противоположных точек, обе из которых - океан. У2

Геометрическая задача Внутри равнобедренной трапеции со стороной 2 расположено 4 точки. Доказать, что расстояние между некоторыми двумя из них меньше 1. Решение. Разобьем трапецию со стороной 2 на три треугольника со стороной 1. Назовем их "клетками", а точки – "кроликами". По принципу Дирихле из четырех точек хотя бы две окажутся в одном из трех треугольников. Расстояние между этими точками меньше 1, поскольку точки не лежат в вершинах треугольников

Задача на комбинаторику В коробке лежат шарики 4-х разных цветов (много белых, много черных, много синих, много красных). Какое наименьшее количество шариков надо наощупь вынуть из мешка, чтобы среди них заведомо оказались два одного цвета? Решение Возьмем за «кроликов» шары, а за «клетки» - черный, белый, синий, красный цвета. Клеток 4, поэтому если кроликов, хотя бы 5, то какие-то два попадут в одну клетку (будет 2 одноцветных шарика).

Задача на делимость Задача. Дано 11 различных целых чисел. Доказать, что из них можно выбрать два числа, разность которых делится на 10. Решение. По крайней мере, два числа из 11 дают одинаковый остаток при делении на 10. Пусть это будут A = 10a + r и B = 10b + r. Тогда их разность делится на 10: A - B = 10(a - b).У2

Задача Дано n+1 различных натуральных чисел. Доказать, что из них можно выбрать два числа А и В, разность которых делится на n Задача Докажите, что среди n+1 различных натуральных чисел найдутся хотя бы два числа А и В такие что, число А 2 - В 2 делится на n. Докажем, что (А – B)(A+B) кратно n Задача Докажите, что среди n+1 различных натуральных чисел найдутся хотя бы два числа А и В такие что, число А 3 – В 3 делится на n. Докажем, что (А – B)(A 2 +AB +B 2 ) кратно n

Задача Доказать, что число N 5 оканчивается на ту же цифру, что число N Докажем, что N 5 -N кратно 10 N(N-1) кратно 5 кратно 2

Малая теорема Ферма Если p - простое число, a - целое число, не делящееся на p, то a p-1 при делении на p даёт остаток 1 Доказательство Каждое из p - 1 чисел a, 2a,..., (p-1) a ("кроликов") даёт при делении на p ненулевой остаток (ведь a не делится на p) Пьер де Ферма́ (17 августа 1601) 12 января 1665) французский математик17 августа января1665 французскийматематик

СТАТИСТИЧЕСКИЕ ИССЛЕДОВАНИЯ Упорядоченный ряд данных частоты использования утверждений при решении задач: У3 У6 У7 У1 У5 У4 У2 Размах частот: 24 – 1 = 23, утверждение 2 при решении рассмотренных задач используется 24 раза, утверждения 3 и 6 один раз. Модой является утверждение 2, так как используется чаще других утверждений.

Таблица частот утвержденияЧастотаОтносительная частота (%) У137,5 У22460 У312,5 У4512,5 У5410 У612,5 У725

Столбчатая диаграмма

Круговая диаграмма

Спасибо за внимание!