Определение: фигура, ограниченная графиком неотрицательной и непрерывной на отрезке [a; b] функции f, осью Ох и прямыми х = а, х = b. Изображения криволинейных трапеций:
Если f – непрерывная и неотрицательная на отрезке [a; b] функция, а F – ее первообразная на этом отрезке, то площадь S соответствующей криволинейной трапеции равна приращению первообразной на отрезке [a; b], т.е.
Доказательство : Рассмотрим функцию S( x), определенную на отрезке [a; b]. Если a < x b, то S( x ) – площадь той части криволинейной трапеции, которая расположена левее вертикальной прямой, проходящей через точку М ( x: 0 ) ( рис 2.а) Если x = a, то S ( a ) = o. Отметим, что S ( b) = S ( S – площадь криволинейной трапеции ). Нам осталось доказать, что S' ( x ) = f ( x ) (2) По определению производной докажем, что ΔS(x) f ( x ) (3) Δ x при Δ x 0
Выясним геометрический смысл числителя ΔS ( x). Для простоты рассмотрим случай Δ x > 0. Поскольку ΔS ( x) = S ( x + Δ x )- S(x), то ΔS ( x) – площадь фигуры, заштрихованной на рисунке 2, б. Дальнейшее доказательство рассмотрите самостоятельно. Итак, мы получили, что S есть первообразная для f. Поэтому в силу основного свойства первообразных для всех x, принадлежащих промежутку [ a ; b ]. имеем : S ( x ) = F (x) + C, где C – некоторая постоянная, а F – одна из первообразных для функции F. Для нахождения C подставим х = а : F ( a ) + C = S ( a ) = 0, откуда C = - F (a ). Следовательно, S ( x ) = F( x ) – F ( a ). (4) Поскольку площадь криволинейной трапеции равна S ( b ), подставляя x = b в формулу ( 4 ), получим: S = S ( b ) = F ( b ) – F ( a ).
Пусть на отрезке [а; b] оси Ох задана непрерывная функция f, не меняющая на нем знака. Фигуру, ограниченную графиком этой функции, отрезком [а; b] и прямыми х = а и х = b (рис. 1), называют криволинейной трапецией. Различные примеры криволинейных трапеций приведены на рисунках 1, а д. Для вычисления площадей криволинейных трапеций применяется следующая теорема: Теорема. Если f непрерывная и неотрицательная на отрезке [а; b] функция, a F ее первообразная на этом отрезке, то площадь S соответствующей криволинейной трапеции (рис. 2) равна приращению первообразной на отрезке [а; b] т. е. S=F(b)-F(a). (1) Доказательство. Рассмотрим функцию S (х), определенную на отрезке [а; b]. Если а
. Докажем, что S'(x)=f(x). (2) По определению производной надо доказать, что при (3) Выясним геометрический смысл числителя Δ S (х). Для простоты рассмотрим случай ΔX>0. Поскольку Δ S(х)= S (х + Δ х) S (х), то Δ S (х) площадь фигуры, заштрихованной на рисунке 2, б. Возьмем теперь прямоугольник той же площади Δ S(x),опирающийся на отрезок [х; х+Δ х] (рис. 2, в). В силу непрерывности функции f верхняя сторона прямоугольника пересекает график функции в некоторой точке с абсциссой с [х; х+Δ х] (в противном случае этот прямоугольник либо содержится в части криволинейной трапеции над отрезком [х;x+Δx], либо содержит ее; соответственно его площадь будет меньше или больше площади Δ S (X)). Высота прямоугольника равна f (с). По формуле площади прямоугольника имеем Δ S (x)=f (с) Δ х, откуда (Эта формула верна и при Δ х
Пример: Вычислить площадь криволинейной трапеции, ограниченной линиями у = 4 - х²и у=0 Решение: 1. Построим криволинейную трапецию: у = 4 - х²- квадратичная функция, график – парабола, ветви направлены вниз. у = 0 - ось абсцисс. 2. Найдём [а; b]: 4-х²= 0; х² = 4 х = -2 или х = 2, т. е. а = -2 b = 2 3. Найдём площадь криволинейной трапеции по формуле: S = F(b) – F(а) S=F(2)-F(-2)=10,(6).
Формула Ньютона-Лейбница Определённый интеграл равен разности значений первообразной при верхнем и нижнем пределах интегрирования.
ТЕОРЕМА. Пусть функция у=f(x) непрерывна на отрезке [a,b] и F(x) – любая первообразная для f(x) на [a,b]. Тогда определенный интеграл от функции f(x) на [a,b] равен приращению первообразной F(x) на этом отрезке, т.е. Нахождение определенных интегралов с использованием формулы Ньютона–Лейбница (2) осуществляется в два шага: на первом шаге, используя технику нахождения неопределенного интеграла, находят некоторую первообразную F(x) для подынтегральной функции f(x); на втором применяется собственно формула Ньютона- Лейбница – находится приращение первообразной, равное искомому интегралу. В связи с этим, введем обозначение для приращения первообразной, которое удобно использовать при записи решений. По определению положим Следует подчеркнуть, что при применении формулы Ньютона – Лейбница можно использовать любую первообразную F(x) для подынтегральной функции f(x), например имеющую наиболее простой вид при С=0